## HESTORE.HU



EN: This Datasheet is presented by the manufacturer.
Please visit our website for pricing and availability at www.hestore.hu.

# LM1577/LM2577 SIMPLE SWITCHER ${ }^{\text {® }}$ Step-Up Voltage Regulator 

Check for Samples: LM1577, LM2577

## FEATURES

- Requires Few External Components
- NPN Output Switches 3.0A, can Stand off 65V
- Wide Input Voltage Range: 3.5 V to 40 V
- Current-mode Operation for Improved Transient Response, Line Regulation, and Current Limit
- 52 kHz Internal Oscillator
- Soft-start Function Reduces In-rush Current During Start-up
- Output Switch Protected by Current Limit, Under-voltage Lockout, and Thermal Shutdown


## TYPICAL APPLICATIONS

- Simple Boost Regulator
- Flyback and Forward Regulators
- Multiple-output Regulator


## Connection Diagrams



Figure 1. 5-Lead (Straight Leads) TO-220 (T) - Top View
See Package Number KC

## DESCRIPTION

The LM1577/LM2577 are monolithic integrated circuits that provide all of the power and control functions for step-up (boost), flyback, and forward converter switching regulators. The device is available in three different output voltage versions: $12 \mathrm{~V}, 15 \mathrm{~V}$, and adjustable.
Requiring a minimum number of external components, these regulators are cost effective, and simple to use. Listed in this data sheet are a family of standard inductors and flyback transformers designed to work with these switching regulators.

Included on the chip is a 3.0A NPN switch and its associated protection circuitry, consisting of current and thermal limiting, and undervoltage lockout. Other features include a 52 kHz fixed-frequency oscillator that requires no external components, a soft start mode to reduce in-rush current during start-up, and current mode control for improved rejection of input voltage and output load transients.


Figure 2. 5-Lead (Bent, Staggered Leads) TO-220
(T) - Top View

See Package Number NDH0005D

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

*No Internal Connection

Figure 3. 16-Lead PDIP (N) - Top View See Package Number NBG0016G

*No internal Connection
Figure 4. 24-Lead SOIC Package (M) - Top View See Package Number DW


Figure 5. 5-Lead DDPAK/TO-263 (S) SFM Package - Figure 6. 5-Lead DDPAK/TO-263 (S) SFM Package Top View Side View
See Package Number KTT0005B


Figure 7. 4-Lead TO-220 (K) - Bottom View See Package Number NEB0005B

## Typical Application



Note: Pin numbers shown are for TO-220 (T) package.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

## Absolute Maximum Ratings ${ }^{(1)(2)}$

| Supply Voltage |  |  |
| :--- | :--- | ---: |
| Output Switch Voltage | 45 V |  |
| Output Switch Current ${ }^{(3)}$ | 65 V |  |
| Power Dissipation | Soldering, 10 sec. | 6.0 A |
| Storage Temperature Range | Internally Limited |  |
| Lead Temperature | $-65^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$ |  |
| Maximum Junction Temperature | $260^{\circ} \mathrm{C}$ |  |
| Minimum ESD Rating | $\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$ | $150^{\circ} \mathrm{C}$ |

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions the device is intended to be functional, but device parameter specifications may not be ensured under these conditions. For ensured specifications and test conditions, see the Electrical Characteristics.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
(3) Due to timing considerations of the LM1577/LM2577 current limit circuit, output current cannot be internally limited when the LM1577/LM2577 is used as a step-up regulator. To prevent damage to the switch, its current must be externally limited to 6.0A. However, output current is internally limited when the LM1577/LM2577 is used as a flyback or forward converter regulator in accordance to the Application Hints.

## Operating Ratings

| Supply Voltage |  | $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}$ |
| :--- | :--- | ---: |
| Output Switch Voltage |  | $0 \mathrm{~V} \leq \mathrm{V}_{\text {SWITCH }} \leq 60 \mathrm{~V}$ |
| Output Switch Current |  | $\mathrm{I}_{\text {SWITCH }} \leq 3.0 \mathrm{~A}$ |
| Junction Temperature Range | LM1577 | $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$ |
|  | LM2577 | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$ |

## Electrical Characteristics—LM1577-12, LM2577-12

Specifications with standard type face are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, and those in bold type face apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, and $\mathrm{I}_{\text {SWITCH }}=0$.

| Symbol | Parameter | Conditions | Typical | $\begin{gathered} \text { LM1577-12 } \\ \text { Limit }^{(1)(2)} \end{gathered}$ | $\underset{\text { Limit }^{(3)}}{\text { LM2577-12 }}$ | Units (Limits) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SYSTEM PARAMETERS Circuit of Figure $29{ }^{(4)}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\text {OUT }}$ | Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{LOAD}}=100 \mathrm{~mA} \text { to } 800 \mathrm{~mA}^{(1)} \end{aligned}$ | 12.0 |  |  | V |
|  |  |  |  | 11.60/11.40 | 11.60/11.40 | V (min) |
|  |  |  |  | 12.40/12.60 | 12.40/12.60 | V (max) |
| $\frac{\Delta \mathrm{V}_{\mathrm{OUT}}}{\Delta \mathrm{~V}_{\mathrm{w}}}$ | Line Regulation | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=300 \mathrm{~mA} \end{aligned}$ | 20 |  |  | mV |
| $\frac{\Delta V_{\text {IN }}}{}$ (1) |  |  |  | 50/100 | 50/100 | $m V(\max )$ |
| $\begin{equation*} \frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta_{\text {LOAD }}} \tag{2} \end{equation*}$ | Load Regulation | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{LOAD}}=100 \mathrm{~mA} \text { to } 800 \mathrm{~mA} \end{aligned}$ | 20 |  |  | mV |
|  |  |  |  | 50/100 | 50/100 | mV (max) |
| $\eta$ | Efficiency | $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=800 \mathrm{~mA}$ | 80 |  |  | \% |
| DEVICE PARAMETERS |  |  |  |  |  |  |
| $\mathrm{I}_{S}$ | Input Supply Current | $\mathrm{V}_{\text {FEEDBACK }}=14 \mathrm{~V}$ (Switch Off) | 7.5 |  |  | mA |
|  |  |  |  | 10.0/14.0 | 10.0/14.0 | $m A(\max )$ |
|  |  | $\begin{aligned} & \mathrm{I}_{\text {SWITCH }}=2.0 \mathrm{~A} \\ & \left.\mathrm{~V}_{\text {COMP }}=2.0 \mathrm{~V} \text { (Max Duty Cycle }\right) \end{aligned}$ | 25 |  |  | mA |
|  |  |  |  | 50/85 | 50/85 | mA(max) |

(1) All limits ensured at room temperature (standard type face) and at temperature extremes (boldface type). All limits are used to calculate Outgoing Quality Level, and are 100\% production tested.
(2) A military RETS electrical test specification is available on request. At the time of printing, the LM1577K-12/883, LM1577K-15/883, and LM1577K-ADJ/883 RETS specifications complied fully with the boldface limits in these columns. The LM1577K-12/883, LM1577K15/883, and LM1577K-ADJ/883 may also be procured to Standard Military Drawing specifications.
(3) All limits ensured at room temperature (standard type face) and at temperature extremes (boldface type). All room temperature limits are $100 \%$ production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods.
(4) External components such as the diode, inductor, input and output capacitors can affect switching regulator performance. When the LM1577/LM2577 is used as shown in the Test Circuit, system performance will be as specified by the system parameters.

## Electrical Characteristics-LM1577-12, LM2577-12 (continued)

Specifications with standard type face are for $T_{J}=25^{\circ}$, and those in bold type face apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, and $\mathrm{I}_{\text {SWITCH }}=0$.

| Symbol | Parameter | Conditions | Typical | $\begin{gathered} \text { LM1577-12 } \\ \text { Limit }^{(1)(2)} \end{gathered}$ | $\underset{\text { Limit }^{(3)}}{\text { LM2577-12 }}$ | Units (Limits) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{UV}}$ | Input Supply Undervoltage Lockout | $\mathrm{I}_{\text {SWITCH }}=100 \mathrm{~mA}$ | 2.90 |  |  | V |
|  |  |  |  | 2.70/2.65 | 2.70/2.65 | $V($ min $)$ |
|  |  |  |  | 3.10/3.15 | 3.10/3.15 | V (max) |
| $\mathrm{f}_{0}$ | Oscillator Frequency | Measured at Switch Pin $\mathrm{I}_{\text {SWITCH }}=100 \mathrm{~mA}$ | 52 |  |  | kHz |
|  |  |  |  | 48/42 | 48/42 | kHz(min) |
|  |  |  |  | 56/62 | 56/62 | kHz(max) |
| $\mathrm{V}_{\text {REF }}$ | Output Reference Voltage | Measured at Feedback Pin <br> $\mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V}$ to 40 V <br> $\mathrm{V}_{\text {COMP }}=1.0 \mathrm{~V}$ |  |  |  | V |
|  |  |  | 12 | 11.76/11.64 | 11.76/11.64 | $V($ min $)$ |
|  |  |  |  | 12.24/12.36 | 12.24/12.36 | V (max) |
| $\frac{\Delta \mathrm{V}_{\mathrm{REF}}}{\Delta \mathrm{~V}_{\text {IN }}}$ | Output Reference Voltage Line Regulator | $\mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V}$ to 40 V | 7 |  |  | mV |
| $\mathrm{R}_{\text {FB }}$ | Feedback Pin Input Resistance |  | 9.7 |  |  | k $\Omega$ |
| $\mathrm{G}_{\mathrm{M}}$ | Error Amp Transconductance | $\begin{aligned} & \mathrm{I}_{\text {COMP }}=-30 \mu \mathrm{~A} \text { to }+30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$ | 370 |  |  | $\mu \mathrm{mho}$ |
|  |  |  |  | 225/145 | 225/145 | $\mu \mathrm{mho}$ (min) |
|  |  |  |  | 515/615 | 515/615 | $\mu \mathrm{mho}$ (max) |
| Avol | Error Amp Voltage Gain | $\begin{aligned} & \mathrm{V}_{\mathrm{COMP}}=1.1 \mathrm{~V} \text { to } 1.9 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{COMP}}=1.0 \mathrm{M} \Omega^{(5)} \end{aligned}$ | 80 |  |  | V/V |
|  |  |  |  | 50/25 | 50/25 | V/V(min) |
|  | Error Amplifier Output Swing | Upper Limit <br> $\mathrm{V}_{\text {FEEDBACK }}=10.0 \mathrm{~V}$ | 2.4 |  |  | V |
|  |  |  |  | 2.2/2.0 | 2.2/2.0 | V (min) |
|  |  | Lower Limit$\mathrm{V}_{\text {FEEDBACK }}=15.0 \mathrm{~V}$ | 0.3 |  |  | $V$ |
|  |  |  |  | 0.40/0.55 | 0.40/0.55 | V (max) |
|  | Error Amplifier Output Current | $\begin{aligned} & V_{\text {FEEDBACK }}=10.0 \mathrm{~V} \text { to } 15.0 \mathrm{~V} \\ & V_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$ | $\pm 200$ |  |  | $\mu \mathrm{A}$ |
|  |  |  |  | $\pm 130 / \pm 90$ | $\pm 130 / \pm 90$ | $\mu \mathrm{A}$ (min) |
|  |  |  |  | $\pm 300 / \pm 400$ | $\pm 300 / \pm 400$ | $\mu \mathrm{A}$ (max) |
| lss | Soft Start Current | $\begin{aligned} & \mathrm{V}_{\text {FEEDBACK }}=10.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {COMP }}=0 \mathrm{~V} \end{aligned}$ | 5.0 |  |  | $\mu \mathrm{A}$ |
|  |  |  |  | 2.5/1.5 | 2.5/1.5 | $\mu \mathrm{A}$ (min) |
|  |  |  |  | 7.5/9.5 | 7.5/9.5 | $\mu \mathrm{A}$ (max) |
| D | Maximum Duty Cycle | $\begin{aligned} & \mathrm{V}_{\text {COMP }}=1.5 \mathrm{~V} \\ & \mathrm{I}_{\text {SWITCH }}=100 \mathrm{~mA} \end{aligned}$ | 95 |  |  | \% |
|  |  |  |  | 93/90 | 93/90 | \%(min) |
| $\frac{\Delta I_{\text {SWITCH }}}{\Delta \mathrm{V}_{\text {COMP }}}$ | Switch <br> Transconductance |  | 12.5 |  |  | A/V |
| $\mathrm{L}_{\mathrm{L}}$ | Switch Leakage Current | $\begin{aligned} & \mathrm{V}_{\text {SWITCH }}=65 \mathrm{~V} \\ & \mathrm{~V}_{\text {FEEDBACK }}=15 \mathrm{~V} \text { (Switch Off) } \end{aligned}$ | 10 |  |  | $\mu \mathrm{A}$ |
|  |  |  |  | 300/600 | 300/600 | $\mu \mathrm{A}$ (max) |
| $\mathrm{V}_{\text {SAT }}$ | Switch Saturation Voltage | $\begin{aligned} & \mathrm{I}_{\text {SWITCH }}=2.0 \mathrm{~A} \\ & \left.\mathrm{~V}_{\text {COMP }}=2.0 \mathrm{~V} \text { (Max Duty Cycle }\right) \end{aligned}$ | 0.5 |  |  | V |
|  |  |  |  | 0.7/0.9 | 0.7/0.9 | V (max) |
|  | NPN Switch Current Limit |  | 4.5 |  |  | A |
|  |  |  |  | 3.7/3.0 | 3.7/3.0 | A(min) |
|  |  |  |  | 5.3/6.0 | 5.3/6.0 | A(max) |

(5) A 1.0 M $\Omega$ resistor is connected to the compensation pin (which is the error amplifier's output) to ensure accuracy in measuring $A_{\text {Vol }}$. In actual applications, this pin's load resistance should be $\geq 10 \mathrm{M} \Omega$, resulting in $A_{\text {VOL }}$ that is typically twice the ensured minimum limit.

## Electrical Characteristics-LM1577-15, LM2577-15

Specifications with standard type face are for $T_{J}=25^{\circ}$, and those in bold type face apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, and $\mathrm{I}_{\text {SWITCH }}=0$.

| Symbol | Parameter | Conditions | Typical | LM1577-15 <br> Limit${ }^{(2)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | LM2577-15 |
| :---: |
| Limit ${ }^{(3)}$ |$\quad$| Units |
| :---: |
| $($ Limits $)$ |

## SYSTEM PARAMETERS Circuit of Figure $30^{(4)}$

| $\mathrm{V}_{\text {OUT }}$ | Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{f})} \mathrm{OAD}=100 \mathrm{~mA} \text { to } 600 \mathrm{~mA} \end{aligned}$ | 15.0 |  |  | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 14.50/14.25 | 14.50/14.25 | V (min) |
|  |  |  |  | 15.50/15.75 | 15.50/15.75 | V (max) |
| $\frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{V}_{\text {IN }}}$ | Line Regulation | $\begin{aligned} & \mathrm{V}_{I N}=3.5 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=300 \mathrm{~mA} \end{aligned}$ | 20 | 50/100 | 50/100 | $\underset{\mathrm{mV}(\max )}{\mathrm{mV}}$ |
| $\frac{\Delta V_{\text {OUT }}}{\Delta_{\text {LOAD }}}$ | Load Regulation | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{LOAD}}=100 \mathrm{~mA} \text { to } 600 \mathrm{~mA} \end{aligned}$ | 20 | 50/100 | 50/100 | $\underset{m V(\max )}{m V}$ |
| $\eta$ | Efficiency | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=600 \mathrm{~mA}$ | 80 |  |  | \% |

## DEVICE PARAMETERS

| Is | Input Supply Current | $\begin{aligned} & \mathrm{V}_{\text {FEEDBACK }}=18.0 \mathrm{~V} \\ & \text { (Switch Off) } \end{aligned}$ | 7.5 |  |  | mA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 10.0/14.0 | 10.0/14.0 | $\mathrm{mA}(\mathrm{max})$ |
|  |  | $\begin{aligned} & \mathrm{ISWITCH}=2.0 \mathrm{~A} \\ & \mathrm{~V} \text { comp }=2.0 \mathrm{~V} \\ & \text { (Max Duty Cycle) } \end{aligned}$ | 25 |  |  | mA |
|  |  |  |  | 50/85 | 50/85 | mA (max) |
| Vuv | Input Supply Undervoltage Lockout | $\mathrm{I}_{\text {SWITCH }}=100 \mathrm{~mA}$ | 2.90 |  |  | V |
|  |  |  |  | 2.70/2.65 | 2.70/2.65 | V (min) |
|  |  |  |  | 3.10/3.15 | 3.10/3.15 | V (max) |
| $\mathrm{fo}^{\prime}$ | Oscillator Frequency | Measured at Switch Pin $I_{\text {SwITCH }}=100 \mathrm{~mA}$ | 52 |  |  | kHz |
|  |  |  |  | 48/42 | 48/42 | kHz (min) |
|  |  |  |  | 56/62 | 56/62 | kHz(max) |
| $\mathrm{V}_{\text {REF }}$ | Output Reference Voltage | Measured at Feedback Pin <br> $\mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V}$ to 40 V <br> $\mathrm{V}_{\text {COMP }}=1.0 \mathrm{~V}$ |  |  |  | V |
|  |  |  | 15 | 14.70/14.55 | 14.70/14.55 | V (min) |
|  |  |  |  | 15.30/15.45 | 15.30/15.45 | V (max) |
| $\frac{\Delta \mathrm{V}_{\text {REF }}}{\Delta \mathrm{V}_{\text {IN }}}$ | Output Reference Voltage Line Regulation | $\mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V}$ to 40 V | 10 |  |  | mV |
| $\mathrm{R}_{\text {FB }}$ | Feedback Pin Input Voltage Line Regulator |  | 12.2 |  |  | k $\Omega$ |
| $\mathrm{G}_{\mathrm{M}}$ | Error Amp Transconductance | $\begin{aligned} & \mathrm{I}_{\text {COMP }}=-30 \mu \mathrm{~A} \text { to }+30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$ | 300 |  |  | $\mu \mathrm{mho}$ |
|  |  |  |  | 170/110 | 170/110 | $\mu \mathrm{mho}$ (min) |
|  |  |  |  | 420/500 | 420/500 | $\mu \mathrm{mho}$ (max) |
| AvoL | Error Amp Voltage Gain | $\begin{aligned} & \mathrm{V}_{\mathrm{COMP}}=1.1 \mathrm{~V} \text { to } 1.9 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{COMP}}=1.0 \mathrm{M}^{(5)} \end{aligned}$ | 65 |  |  | V/V |
|  |  |  |  | 40/20 | 40/20 | $\mathrm{V} / \mathrm{V}$ (min) |

(1) All limits ensured at room temperature (standard type face) and at temperature extremes (boldface type). All limits are used to calculate Outgoing Quality Level, and are 100\% production tested.
(2) A military RETS electrical test specification is available on request. At the time of printing, the LM1577K-12/883, LM1577K-15/883, and LM1577K-ADJ/883 RETS specifications complied fully with the boldface limits in these columns. The LM1577K-12/883, LM1577K15/883, and LM1577K-ADJ/883 may also be procured to Standard Military Drawing specifications.
(3) All limits ensured at room temperature (standard type face) and at temperature extremes (boldface type). All room temperature limits are $100 \%$ production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods.
(4) External components such as the diode, inductor, input and output capacitors can affect switching regulator performance. When the LM1577/LM2577 is used as shown in the Test Circuit, system performance will be as specified by the system parameters.
(5) A $1.0 \mathrm{M} \Omega$ resistor is connected to the compensation pin (which is the error amplifier's output) to ensure accuracy in measuring Avol. In actual applications, this pin's load resistance should be $\geq 10 \mathrm{M} \Omega$, resulting in $\mathrm{A}_{\text {vol }}$ that is typically twice the ensured minimum limit.

## Electrical Characteristics-LM1577-15, LM2577-15 (continued)

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those in bold type face apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, and $\mathrm{I}_{\text {SWITCH }}=0$.

| Symbol | Parameter | Conditions | Typical | $\begin{gathered} \text { Limit }^{(1)(2)} \end{gathered}$ | $\underset{\text { Limit }^{(3)}}{\text { LM2577-15 }}$ | $\begin{gathered} \text { Units } \\ \text { (Limits) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Error Amplifier Output Swing | Upper Limit$\mathrm{V}_{\text {FEEDBACK }}=12.0 \mathrm{~V}$ | 2.4 |  |  | V |
|  |  |  |  | 2.2/2.0 | 2.2/2.0 | V (min) |
|  |  | Lower Limit$\mathrm{V}_{\text {FEEDBACK }}=18.0 \mathrm{~V}$ | 0.3 |  |  | $V$ |
|  |  |  |  | 0.4/0.55 | 0.40/0.55 | V (max) |
|  | Error Amp Output Current | $\begin{aligned} & \mathrm{V}_{\text {FEEDBACK }}=12.0 \mathrm{~V} \text { to } 18.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$ | $\pm 200$ |  |  | $\mu \mathrm{A}$ |
|  |  |  |  | $\pm 130 / \pm 90$ | $\pm 130 / \pm 90$ | $\mu \mathrm{A}$ (min) |
|  |  |  |  | $\pm 300 / \pm 400$ | $\pm 300 / \pm 400$ | $\mu \mathrm{A}$ (max) |
| Iss | Soft Start Current | $\begin{aligned} & \mathrm{V}_{\text {FEEDBACK }}=12.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {COMP }}=0 \mathrm{~V} \end{aligned}$ | 5.0 |  |  | $\mu \mathrm{A}$ |
|  |  |  |  | 2.5/1.5 | 2.5/1.5 | $\mu \mathrm{A}$ (min) |
|  |  |  |  | 7.5/9.5 | 7.5/9.5 | $\mu \mathrm{A}$ (max) |
| D | Maximum Duty Cycle | $\begin{aligned} & \mathrm{V}_{\text {COMP }}=1.5 \mathrm{~V} \\ & \mathrm{I}_{\text {SWITCH }}=100 \mathrm{~mA} \end{aligned}$ | 95 |  |  | \% |
|  |  |  |  | 93/90 | 93/90 | \%(min) |
| $\frac{\Delta \mathrm{I}_{\text {SWITCH }}}{\Delta \mathrm{V}_{\text {COMP }}}$ | Switch Transconductance |  | 12.5 |  |  | A/V |
| $\mathrm{l}_{\mathrm{L}}$ | Switch Leakage Current | $\mathrm{V}_{\text {SWITCH }}=65 \mathrm{~V}$ <br> $\mathrm{V}_{\text {FEedback }}=18.0 \mathrm{~V}$ (Switch Off) | 10 |  |  | $\mu \mathrm{A}$ |
|  |  |  |  | 300/600 | 300/600 | $\mu \mathrm{A}(\max )$ |
| $\mathrm{V}_{\text {SAT }}$ | Switch Saturation Voltage | $\begin{array}{\|l} \mathrm{ISWITCH}=2.0 \mathrm{~A} \\ \mathrm{~V} \text { comp }=2.0 \mathrm{~V} \\ \text { (Max Duty Cycle) } \\ \hline \end{array}$ | 0.5 |  |  | $\checkmark$ |
|  |  |  |  | 0.7/0.9 | 0.7/0.9 | V (max) |
|  | NPN Switch Current Limit | $\mathrm{V}_{\text {COMP }}=2.0 \mathrm{~V}$ | 4.3 |  |  | A |
|  |  |  |  | 3.7/3.0 | 3.7/3.0 | A(min) |
|  |  |  |  | 5.3/6.0 | 5.3/6.0 | A(max) |

## Electrical Characteristics-LM1577-ADJ, LM2577-ADJ

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those in bold type face apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}, \mathrm{~V}_{\text {FEEDBACK }}=\mathrm{V}_{\text {REF }}$, and $\mathrm{I}_{\text {SWITCH }}=0$.

| Symbol | Parameter | Conditions | Typical | $\begin{aligned} & \text { LM1577-ADJ } \\ & \text { Limit }^{(1)(2)} \end{aligned}$ | $\begin{aligned} & \text { LM2577-ADJ } \\ & \text { Limit }^{(3)} \end{aligned}$ | Units (Limits) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SYSTEM PARAMETERS Circuit of Figure $31{ }^{(4)}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\text {OUT }}$ | Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \text { to } 800 \mathrm{~mA}^{(1)} \end{aligned}$ | 12.0 |  |  | V |
|  |  |  |  | 11.60/11.40 | 11.60/11.40 | $V(\min )$ |
|  |  |  |  | 12.40/12.60 | 12.40/12.60 | $V$ (max) |
| $\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{V}_{\text {IN }}$ | Line Regulation | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=300 \mathrm{~mA} \end{aligned}$ | 20 |  |  | mV |
|  |  |  |  | 50/100 | 50/100 | $m \mathrm{~V}$ (max) |
| $\Delta \mathrm{V}_{\mathrm{OUT}} / \Delta \mathrm{I}_{\mathrm{LOA}}$ | Load Regulation | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \text { to } 800 \mathrm{~mA} \end{aligned}$ | 20 |  |  | mV |
|  |  |  |  | 50/100 | 50/100 | $m \mathrm{~V}$ (max) |
| $\eta$ | Efficiency | $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=800 \mathrm{~mA}$ | 80 |  |  | \% |
| DEVICE PARAMETERS |  |  |  |  |  |  |
| $\mathrm{I}_{S}$ | Input Supply Current | $\mathrm{V}_{\text {FEEDBACK }}=1.5 \mathrm{~V}$ (Switch Off) | 7.5 |  |  | mA |
|  |  |  |  | 10.0/14.0 | 10.0/14.0 | $m A(\max )$ |
|  |  | $\begin{aligned} & I_{\text {SWITCH }}=2.0 \mathrm{~A} \\ & \left.\mathrm{~V}_{\text {COMP }}=2.0 \mathrm{~V} \text { (Max Duty Cycle }\right) \end{aligned}$ | 25 |  |  | mA |
|  |  |  |  | 50/85 | 50/85 | mA(max) |
| $\mathrm{V}_{\text {UV }}$ | Input Supply Undervoltage Lockout | $\mathrm{I}_{\text {SWITCH }}=100 \mathrm{~mA}$ | 2.90 |  |  | V |
|  |  |  |  | 2.70/2.65 | 2.70/2.65 | $V(\min )$ |
|  |  |  |  | 3.10/3.15 | 3.10/3.15 | V (max) |
| $\mathrm{f}_{0}$ | Oscillator Frequency | Measured at Switch Pin $I_{\text {SWITCH }}=100 \mathrm{~mA}$ | 52 |  |  | kHz |
|  |  |  |  | 48/42 | 48/42 | kHz(min) |
|  |  |  |  | 56/62 | 56/62 | kHz(max) |
| $\mathrm{V}_{\text {REF }}$ | Reference Voltage | Measured at Feedback Pin $\mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V}$ to 40 V <br> $\mathrm{V}_{\text {COMP }}=1.0 \mathrm{~V}$ |  |  |  | V |
|  |  |  | 1.230 | 1.214/1.206 | 1.214/1.206 | $V(\min )$ |
|  |  |  |  | 1.246/1.254 | 1.246/1.254 | V (max) |
| $\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{V}_{\text {IN }}$ | Reference Voltage Line Regulation | $\mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V}$ to 40 V | 0.5 |  |  | mV |
| $\mathrm{I}_{\mathrm{B}}$ | Error Amp Input Bias Current | $\mathrm{V}_{\mathrm{COMP}}=1.0 \mathrm{~V}$ | 100 |  |  | nA |
|  |  |  |  | 300/800 | 300/800 | $n A(\max )$ |
| $\mathrm{G}_{\mathrm{M}}$ | Error Amp <br> Transconductance | $\begin{aligned} & I_{\text {COMP }}=-30 \mu \mathrm{~A} \text { to }+30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$ | 3700 |  |  | $\mu \mathrm{mho}$ |
|  |  |  |  | 2400/1600 | 2400/1600 | $\mu \mathrm{mho}$ (min) |
|  |  |  |  | 4800/5800 | 4800/5800 | $\mu \mathrm{mho}$ (max) |
| AVOL | Error Amp Voltage Gain | $\begin{aligned} & \mathrm{V}_{\mathrm{COMP}}=1.1 \mathrm{~V} \text { to } 1.9 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{COMP}}=1.0 \mathrm{M} \Omega^{(5)} \end{aligned}$ | 800 |  |  | V/V |
|  |  |  |  | 500/250 | 500/250 | $\mathrm{V} / \mathrm{V}(\mathrm{min})$ |
|  | Error Amplifier Output Swing | Upper Limit <br> $\mathrm{V}_{\text {FEEDBACK }}=1.0 \mathrm{~V}$ | 2.4 |  |  | V |
|  |  |  |  | 2.2/2.0 | 2.2/2.0 | V (min) |
|  |  | Lower Limit$\mathrm{V}_{\text {FEEDBACK }}=1.5 \mathrm{~V}$ | 0.3 |  |  | V |
|  |  |  |  | 0.40/0.55 | 0.40/0.55 | V (max) |

(1) All limits ensured at room temperature (standard type face) and at temperature extremes (boldface type). All limits are used to calculate Outgoing Quality Level, and are 100\% production tested.
(2) A military RETS electrical test specification is available on request. At the time of printing, the LM1577K-12/883, LM1577K-15/883, and LM1577K-ADJ/883 RETS specifications complied fully with the boldface limits in these columns. The LM1577K-12/883, LM1577K15/883, and LM1577K-ADJ/883 may also be procured to Standard Military Drawing specifications.
(3) All limits ensured at room temperature (standard type face) and at temperature extremes (boldface type). All room temperature limits are $100 \%$ production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods.
(4) External components such as the diode, inductor, input and output capacitors can affect switching regulator performance. When the LM1577/LM2577 is used as shown in the Test Circuit, system performance will be as specified by the system parameters.
(5) A $1.0 \mathrm{M} \Omega$ resistor is connected to the compensation pin (which is the error amplifier's output) to ensure accuracy in measuring $A_{v o l}$. In actual applications, this pin's load resistance should be $\geq 10 \mathrm{M} \Omega$, resulting in $A_{V O L}$ that is typically twice the ensured minimum limit.

## Electrical Characteristics-LM1577-ADJ, LM2577-ADJ (continued)

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those in bold type face apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}, \mathrm{~V}_{\text {FEEDBACK }}=\mathrm{V}_{\text {REF }}$, and $\mathrm{I}_{\text {SWITCH }}=0$.

| Symbol | Parameter | Conditions | Typical | $\begin{aligned} & \text { LM1577-ADJ } \\ & \text { Limit }^{(1)(2)} \end{aligned}$ | $\begin{aligned} & \text { LM2577-ADJ } \\ & \text { Limit }^{(3)} \end{aligned}$ | Units (Limits) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Error Amp Output Current | $\begin{aligned} & \mathrm{V}_{\text {FEEDBACK }}=1.0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$ | $\pm 200$ |  |  | $\mu \mathrm{A}$ |
|  |  |  |  | $\pm 130 / \pm 90$ | $\pm 130 / \pm 90$ | $\mu \mathrm{A}(\mathrm{min})$ |
|  |  |  |  | $\pm 300 / \pm 400$ | $\pm 300 / \pm 400$ | $\mu \mathrm{A}(\max )$ |
| $\mathrm{I}_{\text {SS }}$ | Soft Start Current | $\begin{aligned} & \mathrm{V}_{\text {FEEDBACK }}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {COMP }}=0 \mathrm{~V} \end{aligned}$ | 5.0 |  |  | $\mu \mathrm{A}$ |
|  |  |  |  | 2.5/1.5 | 2.5/1.5 | $\mu \mathrm{A}($ min $)$ |
|  |  |  |  | 7.5/9.5 | 7.5/9.5 | $\mu \mathrm{A}(\max )$ |
| D | Maximum Duty Cycle | $\begin{aligned} & \mathrm{V}_{\mathrm{COMP}}=1.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{SWITCH}}=100 \mathrm{~mA} \end{aligned}$ | 95 |  |  | \% |
|  |  |  |  | 93/90 | 93/90 | \%(min) |
| $\begin{aligned} & \Delta \mathrm{I}_{\text {SWITCH }} / \Delta \mathrm{V}_{\mathrm{C}} \\ & \text { OMP } \end{aligned}$ | Switch Transconductance |  | 12.5 |  |  | A/V |
| $\mathrm{I}_{\mathrm{L}}$ | Switch Leakage Current | $\begin{aligned} & \mathrm{V}_{\text {SWITCH }}=65 \mathrm{~V} \\ & \mathrm{~V}_{\text {FEEDBACK }}=1.5 \mathrm{~V} \text { (Switch Off) } \end{aligned}$ | 10 |  |  | $\mu \mathrm{A}$ |
|  |  |  |  | 300/600 | 300/600 | $\mu \mathrm{A}(\max )$ |
| $\mathrm{V}_{\text {SAT }}$ | Switch Saturation Voltage | $\begin{aligned} & I_{\text {SWITCH }}=2.0 \mathrm{~A} \\ & \left.\mathrm{~V}_{\text {COMP }}=2.0 \mathrm{~V} \text { (Max Duty Cycle }\right) \end{aligned}$ | 0.5 |  |  | V |
|  |  |  |  | 0.7/0.9 | 0.7/0.9 | V (max) |
|  | NPN Switch Current Limit | $\mathrm{V}_{\text {COMP }}=2.0 \mathrm{~V}$ | 4.3 |  |  | A |
|  |  |  |  | 3.7/3.0 | 3.7/3.0 | A(min) |
|  |  |  |  | 5.3/6.0 | 5.3/6.0 | A(max) |
| THERMAL PARAMETERS (All Versions) |  |  |  |  |  |  |
| $\theta_{\mathrm{JA}}$ | Thermal Resistance | K Package, Junction to Ambient <br> K Package, Junction to Case | $\begin{aligned} & 35 \\ & 1.5 \end{aligned}$ |  |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\begin{aligned} & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \end{aligned}$ |  | T Package, Junction to Ambient T Package, Junction to Case | $\begin{gathered} 65 \\ 2 \end{gathered}$ |  |  |  |
| $\theta_{\text {JA }}$ |  | N Package, Junction to Ambient ${ }^{(6)}$ | 85 |  |  |  |
| $\theta_{\text {JA }}$ |  | M Package, Junction to Ambient ${ }^{(6)}$ | 100 |  |  |  |
| $\theta_{J A}$ |  | S Package, Junction to Ambient ${ }^{(7)}$ | 37 |  |  |  |

(6) Junction to ambient thermal resistance with approximately 1 square inch of pc board copper surrounding the leads. Additional copper area will lower thermal resistance further. See thermal model in "Switchers Made Simple" software.
(7) If the DDPAK/TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area thermally connected to the package. Using 0.5 square inches of copper area, $\theta_{\mathrm{JA}}$ is $50^{\circ} \mathrm{C} / \mathrm{W}$; with 1 square inch of copper area, $\theta_{\mathrm{JA}}$ is $37{ }^{\circ} \mathrm{C} / \mathrm{W}$; and with 1.6 or more square inches of copper area, $\theta_{\mathrm{JA}}$ is $32^{\circ} \mathrm{C} / \mathrm{W}$.

Typical Performance Characteristics


Figure 8.


Figure 10.


Figure 12.


Figure 9.


Figure 11.


Figure 13.

## Typical Performance Characteristics (continued)



Figure 14.

Error Amp Transconductance
vs Temperature


Figure 16.


Figure 18.

Error Amp Transconductance vs Temperature


Figure 15.


Figure 17.


Figure 19.


Figure 20.


Figure 22


Figure 24

Figure 21.


Figure 23.


Figure 25.

Typical Performance Characteristics (continued)


Figure 26.


Figure 27.

ambient temperature ( ${ }^{\circ} \mathrm{C}$ )
Figure 28.
(1) If the DDPAK/TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area thermally connected to the package. Using 0.5 square inches of copper area, $\theta_{\mathrm{JA}}$ is $50^{\circ} \mathrm{C} / \mathrm{W}$; with 1 square inch of copper area, $\theta_{\mathrm{JA}}$ is $37{ }^{\circ} \mathrm{C} / \mathrm{W}$; and with 1.6 or more square inches of copper area, $\theta_{\mathrm{JA}}$ is $32^{\circ} \mathrm{C} / \mathrm{W}$.

## LM1577-12, LM2577-12 TEST CIRCUIT


$\mathrm{L}=415-0930$ (AIE)
$\mathrm{D}=$ any manufacturer
Cout $=$ Sprague Type 673D
Electrolytic $680 \mu \mathrm{~F}, 20 \mathrm{~V}$
Note: Pin numbers shown are for TO-220 (T) package
Figure 29. Circuit Used to Specify System Parameters for 12V Versions

## LM1577-15, LM2577-15 Test Circuit


$\mathrm{L}=415-0930$ (AIE)
$\mathrm{D}=$ any manufacturer
Cout $=$ Sprague Type 673D
Electrolytic $680 \mu \mathrm{~F}, 20 \mathrm{~V}$
Note: Pin numbers shown are for TO-220 (T) package
Figure 30. Circuit Used to Specify System Parameters for 15V Versions

## LM1577-ADJ, LM2577-ADJ Test Circuit



L = 415-0930 (AIE)
$\mathrm{D}=$ any manufacturer
$\mathrm{C}_{\text {Out }}=$ Sprague Type 673D
Electrolytic $680 \mu \mathrm{~F}, 20 \mathrm{~V}$
R1 $=48.7 \mathrm{k}$ in series with $511 \Omega$ (1\%)
R2 $=5.62 \mathrm{k}$ ( $1 \%$ )
Note: Pin numbers shown are for TO-220 (T) package
Figure 31. Circuit Used to Specify System Parameters for ADJ Versions

## Application Hints



Note: Pin numbers shown are for TO-220 (T) package
*Resistors are internal to LM1577/LM2577 for 12V and 15V versions.
Figure 32. LM1577/LM2577 Block Diagram and Boost Regulator Application

## STEP-UP (BOOST) REGULATOR

Figure 32 shows the LM1577-ADJ/LM2577-ADJ used as a Step-Up Regulator. This is a switching regulator used for producing an output voltage greater than the input supply voltage. The LM1577-12/LM2577-12 and LM1577-15/LM2577-15 can also be used for step-up regulators with 12 V or 15 V outputs (respectively), by tying the feedback pin directly to the regulator output.
A basic explanation of how it works is as follows. The LM1577/LM2577 turns its output switch on and off at a frequency of 52 kHz , and this creates energy in the inductor (L). When the NPN switch turns on, the inductor current charges up at a rate of $\mathrm{V}_{\mathbb{N}} / \mathrm{L}$, storing current in the inductor. When the switch turns off, the lower end of the inductor flies above $\mathrm{V}_{\mathbb{I}}$, discharging its current through diode ( D ) into the output capacitor ( $\mathrm{C}_{\text {Out }}$ ) at a rate of $\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right) /$. Thus, energy stored in the inductor during the switch on time is transferred to the output during the switch off time. The output voltage is controlled by the amount of energy transferred which, in turn, is controlled by modulating the peak inductor current. This is done by feeding back a portion of the output voltage to the error amp, which amplifies the difference between the feedback voltage and a 1.230 V reference. The error amp output voltage is compared to a voltage proportional to the switch current (i.e., inductor current during the switch on time).
The comparator terminates the switch on time when the two voltages are equal, thereby controlling the peak switch current to maintain a constant output voltage.
Voltage and current waveforms for this circuit are shown in Figure 33, and formulas for calculating them are given in Table 1.


Figure 33. Step-Up Regulator Waveforms
Table 1. Step-Up Regulator Formulas ${ }^{(1)}$

| Duty Cycle | D | $\frac{V_{\text {OUT }}+V_{F}-v_{\text {IN }}}{V_{\text {OUT }}+V_{F}-V_{\text {SAT }}} \approx \frac{V_{\text {OUT }}-v_{\text {IN }}}{V_{\text {OUT }}}$ |
| :---: | :---: | :---: |
| Average Inductor Current | $\mathrm{I}_{\text {IND(AVE) }}$ | $\frac{\text { LIOAD }}{1-\mathrm{D}}$ |
| Inductor Current Ripple | $\Delta{ }^{\text {IND }}$ | $\frac{\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {SAT }}}{\mathrm{L}} \frac{\mathrm{D}}{52,000}$ |
| Peak Inductor Current | $\mathrm{l}_{\mathrm{IND}(\mathrm{PK})}$ | $\frac{\mathrm{I}_{\mathrm{LOAD}(\text { max })}}{1-\mathrm{D}_{\text {(max })}}+\frac{\Delta \mathrm{I}_{\mathrm{ND}}}{2}$ |
| Peak Switch Current | $\mathrm{I}_{\text {SW(PK) }}$ | $\frac{\mathrm{L}_{\mathrm{LOAD}(\text { max })}}{1-\mathrm{D}_{\text {(max }}}+\frac{\Delta l_{\mathrm{NDD}}}{2}$ |
| Switch Voltage When Off | $\mathrm{V}_{\text {SW(OFF) }}$ | $\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\text {F }}$ |
| Diode Reverse Voltage | $V_{\text {R }}$ | $\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {SAT }}$ |
| Average Diode Current | $\mathrm{I}_{\mathrm{D}(\text { AVE })}$ | ILOAD |
| Peak Diode Current | $\mathrm{I}(\mathrm{PK})$ | $\frac{\mathrm{L}_{\mathrm{OAD}}}{1-\mathrm{D}_{\text {(max })}}+\frac{\Delta \mathrm{l}_{\mathrm{ND}}}{2}$ |
| Power Dissipation of LM1577/2577 | $P_{\text {D }}$ | $0.25 \Omega\left(\frac{\mathrm{~L}_{\mathrm{LOAD}}}{1-\mathrm{D}}\right)^{2} \mathrm{D}+\frac{\mathrm{I}_{\mathrm{LOAD}} \mathrm{DV} \mathrm{~V}_{\mathrm{N}}}{50(1-\mathrm{D})}$ |

(1) $V_{F}=$ Forward Biased Diode Voltage
$\mathrm{I}_{\text {LOAD }}=$ Output Load Current

## STEP-UP REGULATOR DESIGN PROCEDURE

The following design procedure can be used to select the appropriate external components for the circuit in Figure 32, based on these system requirements.

## Given:

- $\quad \mathrm{V}_{\mathrm{IN}(\text { min })}=$ Minimum input supply voltage
- $\quad \mathrm{V}_{\text {OUT }}=$ Regulated output voltage
- $\quad \mathrm{I}_{\mathrm{LOAD}(\text { max })}=$ Maximum output load current
- Before proceeding any further, determine if the LM1577/LM2577 can provide these values of $\mathrm{V}_{\text {OUt }}$ and $I_{\text {LOAD(max) }}$ when operating with the minimum value of $\mathrm{V}_{\mathbb{I N}}$. The upper limits for $\mathrm{V}_{\text {OUT }}$ and $\mathrm{I}_{\text {LOAD(max) }}$ are given by the following equations.

$$
\mathrm{I}_{\mathrm{LOAD}(\max )} \leq \frac{2.1 \mathrm{~A} \times \mathrm{V}_{\text {IN(min) }}}{\mathrm{V}_{\text {OUT }}}
$$

where

$$
\begin{array}{rr}
\text { - } & \mathrm{V}_{\text {OUT }} \leq 60 \mathrm{~V} \\
\mathrm{~V}_{\text {OUT }} \leq 10 \times \mathrm{V}_{\text {IN(min) }} \tag{3}
\end{array}
$$

These limits must be greater than or equal to the values specified in this application.

1. Inductor Selection (L)
A. Voltage Options:
2. For 12 V or 15 V output

From Figure 34 (for 12V output) or Figure 35 (for 15V output), identify inductor code for region
indicated by $\mathrm{V}_{\text {IN (min) }}$ and $\mathrm{I}_{\text {LOAD (max }}$. The shaded region indicates conditions for which the LM1577/LM2577 output switch would be operating beyond its switch current rating. The minimum operating voltage for the LM1577/LM2577 is 3.5 V .
From here, proceed to step C.
2. For Adjustable version

Preliminary calculations:
The inductor selection is based on the calculation of the following three parameters:
$\mathrm{D}_{(\max )}$, the maximum switch duty cycle ( $0 \leq \mathrm{D} \leq 0.9$ ):
$D_{(\text {max })}=\frac{V_{\text {OUT }}+V_{F}-V_{\text {IN(min) }}}{V_{\text {OUT }}+V_{F}-0.6 V}$
where $\mathrm{V}_{\mathrm{F}}=0.5 \mathrm{~V}$ for Schottky diodes and 0.8 V for fast recovery diodes (typically);
$E \cdot T$, the product of volts $\times$ time that charges the inductor:
$E \bullet T=\frac{\mathrm{D}_{(\text {max })}\left(\mathrm{V}_{1 \mathrm{~N}(\text { min })}-0.6 \mathrm{~V}\right) 10^{6}}{52,000 \mathrm{~Hz}} \quad\left(\mathrm{~V}_{\bullet} \mu \mathrm{s}\right)$
$I_{I N D, D C}$, the average inductor current under full load;
$I_{I N D, D C}=\frac{1.05 \times I_{\text {LOAD }}(\max )}{1-D_{(\max )}}$
B. Identify Inductor Value:

1. From Figure 36 , identify the inductor code for the region indicated by the intersection of $\mathrm{E} \cdot \mathrm{T}$ and $\mathrm{I}_{\mathrm{IND,DC}}$. This code gives the inductor value in microhenries. The L or H prefix signifies whether the inductor is rated for a maximum $\mathrm{E} \cdot \mathrm{T}$ of $90 \mathrm{~V} \cdot \mu \mathrm{~s}(\mathrm{~L})$ or $250 \mathrm{~V} \cdot \mu \mathrm{~s}(\mathrm{H})$.
2. If $D<0.85$, go on to step $C$. If $D \geq 0.85$, then calculate the minimum inductance needed to ensure the switching regulator's stability:
$\mathrm{L}_{\text {MIN }}=\frac{\left.6.4\left(\mathrm{~V}_{\text {IN(min }}\right)-0.6 \mathrm{~V}\right)\left(2 \mathrm{D}_{(\text {max })}-1\right)}{1-\mathrm{D}_{(\text {max })}} \quad(\mu \mathrm{H})$
If $L_{\text {MIN }}$ is smaller than the inductor value found in step $B 1$, go on to step $C$. Otherwise, the inductor value found in step B1 is too low; an appropriate inductor code should be obtained from the graph as follows:
3. Find the lowest value inductor that is greater than $\mathrm{L}_{\text {MIN }}$.
4. Find where $E \cdot T$ intersects this inductor value to determine if it has an $L$ or $H$ prefix. If $E \cdot T$ intersects both the $L$ and H regions, select the inductor with an H prefix.


Figure 34. LM2577-12 Inductor Selection Guide


Figure 35. LM2577-15 Inductor Selection Guide


Note: These charts assume that the inductor ripple current is approximately $20 \%$ to $30 \%$ of the average inductor current (when the regulator is under full load). Greater ripple current causes higher peak switch currents and greater output ripple voltage; lower ripple current is achieved with larger-value inductors. The factor of 20 to $30 \%$ is chosen as a convenient balance between the two extremes.

## Figure 36. LM1577-ADJ/LM2577-ADJ Inductor Selection Graph

C. Select an inductor from Table 2 which cross-references the inductor codes to the part numbers of three different manufacturers. Complete specifications for these inductors are available from the respective manufacturers. The inductors listed in this table have the following characteristics:

- $A I E$ : ferrite, pot-core inductors; Benefits of this type are low electro-magnetic interference (EMI), small physical size, and very low power dissipation (core loss). Be careful not to operate these inductors too far beyond their maximum ratings for $\mathrm{E} \cdot \mathrm{T}$ and peak current, as this will saturate the core.
- Pulse: powdered iron, toroid core inductors; Benefits are low EMI and ability to withstand E•T and peak current above rated value better than ferrite cores.
- Renco: ferrite, bobbin-core inductors; Benefits are low cost and best ability to withstand E•T and peak current above rated value. Be aware that these inductors generate more EMI than the other types, and this may interfere with signals sensitive to noise.


## Table 2. Table of Standardized Inductors and Manufacturer's Part Numbers ${ }^{(1)}$

| Inductor | Manufacturer's Part Number |  |  |
| :---: | :---: | :---: | :---: |
| Code | Schott | Pulse | Renco |
| L47 | 67126980 | PE -53112 | RL2442 |
| L68 | 67126990 | PE -92114 | RL2443 |
| L100 | 67127000 | PE -92108 | RL2444 |
| L150 | 67127010 | PE -53113 | RL1954 |
| L220 | 67127020 | PE -52626 | RL1953 |
| L330 | 67127030 | PE -52627 | RL1952 |
| L470 | 67127040 | PE -53114 | RL1951 |
| L680 | 67127050 | PE -52629 | RL1950 |
| H150 | 67127060 | PE -53115 | RL2445 |
| H220 | 67127070 | PE -53116 | RL2446 |
| H330 | 67127080 | PE -53117 | RL2447 |
| H470 | 67127090 | PE -53118 | RL1961 |
| H680 | 67127100 | PE -53119 | RL1960 |
| H1000 | 67127110 | PE -53120 | RL1959 |
| H1500 | 67127120 | PE -53121 | RL1958 |
| H2200 | 67127130 | PE -53122 | RL2448 |

(1) Schott Corp., (612) 475-1173

1000 Parkers Lake Rd., Wayzata, MN 55391
Pulse Engineering, (619) 268-2400
P.O. Box 12235, San Diego, CA 92112

Renco Electronics Inc., (516) 586-5566
60 Jeffryn Blvd. East, Deer Park, NY 11729

## 2. Compensation Network ( $\mathbf{R}_{\mathrm{C}}, \mathrm{C}_{\mathrm{C}}$ ) and Output Capacitor ( $\mathrm{C}_{\mathrm{out}}$ ) Selection

$R_{C}$ and $C_{C}$ form a pole-zero compensation network that stabilizes the regulator. The values of $R_{C}$ and $C_{C}$ are mainly dependant on the regulator voltage gain, $\mathrm{I}_{\mathrm{LOAD}(\max )}, \mathrm{L}$ and $\mathrm{C}_{\text {OUt }}$. The following procedure calculates values for $\mathrm{R}_{\mathrm{C}}, \mathrm{C}_{\mathrm{C}}$, and $\mathrm{C}_{\mathrm{Out}}$ that ensure regulator stability. Be aware that this procedure doesn't necessarily result in $\mathrm{R}_{\mathrm{C}}$ and $\mathrm{C}_{\mathrm{C}}$ that provide optimum compensation. In order to ensure optimum compensation, one of the standard procedures for testing loop stability must be used, such as measuring $\mathrm{V}_{\text {OUT }}$ transient response when pulsing load (see Figure 39).
A. First, calculate the maximum value for $R_{C}$.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{C}} \leq \frac{750 \times \mathrm{I}_{\mathrm{LOAD}(\max )} \times \mathrm{V}_{\mathrm{OUT}^{2}}}{\mathrm{~V}_{\mathrm{IN}(\min )^{2}}} \tag{8}
\end{equation*}
$$

Select a resistor less than or equal to this value, and it should also be no greater than $3 \mathrm{k} \Omega$.
B. Calculate the minimum value for $\mathrm{C}_{\text {Out }}$ using the following two equations.

$$
\mathrm{C}_{\text {OUT }} \geq \frac{0.19 \times \mathrm{L} \times \mathrm{R}_{\mathrm{C}} \times \mathrm{I}_{\text {LOAD(max }}}{\mathrm{V}_{\text {IN(min) }} \times \mathrm{V}_{\text {OUT }}}
$$

and

$$
\begin{equation*}
\mathrm{C}_{\text {OUT }} \geq \frac{\mathrm{V}_{\mathrm{IN}(\min )} \times \mathrm{R}_{\mathrm{C}} \times\left(\mathrm{V}_{\text {IN( }(\min )}+\left(3.74 \times 10^{5} \times \mathrm{L}\right)\right)}{487,800 \times \mathrm{V}_{\text {OUT }^{3}}} \tag{9}
\end{equation*}
$$

The larger of these two values is the minimum value that ensures stability.
C. Calculate the minimum value of $C_{C}$.

$$
\begin{equation*}
\mathrm{C}_{\mathrm{C}} \geq \frac{58.5 \times \mathrm{V}_{\mathrm{OUT}^{2}} \times \mathrm{C}_{\mathrm{OUT}}}{\mathrm{R}_{\mathrm{C}}{ }^{2} \times \mathrm{V}_{\mathrm{IN}(\mathrm{~min})}} \tag{10}
\end{equation*}
$$

The compensation capacitor is also part of the soft start circuitry. When power to the regulator is turned on, the switch duty cycle is allowed to rise at a rate controlled by this capacitor (with no control on the duty cycle, it would immediately rise to $90 \%$, drawing huge currents from the input power supply). In order to operate properly, the soft start circuit requires $\mathrm{C}_{\mathrm{C}} \geq 0.22 \mu \mathrm{~F}$.

The value of the output filter capacitor is normally large enough to require the use of aluminum electrolytic capacitors. Table 3 lists several different types that are recommended for switching regulators, and the following parameters are used to select the proper capacitor.
Working Voltage (WVDC): Choose a capacitor with a working voltage at least $20 \%$ higher than the regulator output voltage.
Ripple Current: This is the maximum RMS value of current that charges the capacitor during each switching cycle. For step-up and flyback regulators, the formula for ripple current is

$$
\begin{equation*}
\mathrm{I}_{\mathrm{RIPPLE}(\mathrm{RMS})}=\frac{\mathrm{I}_{\mathrm{LOAD}(\max )} \times \mathrm{D}_{(\max )}}{1-\mathrm{D}_{(\max )}} \tag{11}
\end{equation*}
$$

Choose a capacitor that is rated at least $50 \%$ higher than this value at 52 kHz .
Equivalent Series Resistance (ESR) : This is the primary cause of output ripple voltage, and it also affects the values of $R_{C}$ and $C_{C}$ needed to stabilize the regulator. As a result, the preceding calculations for $C_{C}$ and $R_{C}$ are only valid if ESR doesn't exceed the maximum value specified by the following equations.

$$
\mathrm{ESR} \leq \frac{0.01 \times \mathrm{V}_{\mathrm{OUT}}}{\mathrm{I}_{\mathrm{RIPPLE}(\mathrm{P}-\mathrm{P})}} \text { and } \leq \frac{8.7 \times(10)-3 \times \mathrm{V}_{\mathrm{IN}}}{\mathrm{I}_{\mathrm{LOAD}(\max )}}
$$

where

$$
\begin{equation*}
\mathrm{I}_{\mathrm{RIPPLE}(P-P)}=\frac{1.15 \times \mathrm{I}_{\mathrm{LOAD}(\max )}}{1-\mathrm{D}_{(\max )}} \tag{12}
\end{equation*}
$$

Select a capacitor with ESR, at 52 kHz , that is less than or equal to the lower value calculated. Most electrolytic capacitors specify ESR at 120 Hz which is $15 \%$ to $30 \%$ higher than at 52 kHz . Also, be aware that ESR increases by a factor of 2 when operating at $-20^{\circ} \mathrm{C}$.
In general, low values of ESR are achieved by using large value capacitors ( $\mathrm{C} \geq 470 \mu \mathrm{~F}$ ), and capacitors with high WVDC, or by paralleling smaller-value capacitors.

## 3. Output Voltage Selection (R1 and R2)

This section is for applications using the LM1577-ADJ/LM2577-ADJ. Skip this section if the LM1577-12/LM257712 or LM1577-15/LM2577-15 is being used.
With the LM1577-ADJ/LM2577-ADJ, the output voltage is given by

$$
\begin{equation*}
\mathrm{V}_{\text {OUT }}=1.23 \mathrm{~V}(1+\mathrm{R} 1 / \mathrm{R} 2) \tag{13}
\end{equation*}
$$

Resistors R1 and R2 divide the output down so it can be compared with the LM1577-ADJ/LM2577-ADJ internal 1.23 V reference. For a given desired output voltage $\mathrm{V}_{\text {OUt }}$, select R 1 and R 2 so that

$$
\begin{equation*}
\frac{\mathrm{R} 1}{\mathrm{R} 2}=\frac{\mathrm{V}_{\text {OUT }}}{1.23 \mathrm{~V}}-1 \tag{14}
\end{equation*}
$$

## 4. Input Capacitor Selection ( $\mathrm{C}_{\mathrm{IN}}$ )

The switching action in the step-up regulator causes a triangular ripple current to be drawn from the supply source. This in turn causes noise to appear on the supply voltage. For proper operation of the LM1577, the input voltage should be decoupled. Bypassing the Input Voltage pin directly to ground with a good quality, low ESR, $0.1 \mu \mathrm{~F}$ capacitor (leads as short as possible) is normally sufficient.

Table 3. Aluminum Electrolytic Capacitors Recommended for Switching Regulators


If the LM1577 is located far from the supply source filter capacitors, an additional large electrolytic capacitor (e.g. $47 \mu \mathrm{~F}$ ) is often required.

## 5. Diode Selection (D)

The switching diode used in the boost regulator must withstand a reverse voltage equal to the circuit output voltage, and must conduct the peak output current of the LM2577. A suitable diode must have a minimum reverse breakdown voltage greater than the circuit output voltage, and should be rated for average and peak current greater than $\mathrm{I}_{\mathrm{LOAD}(\max )}$ and $\mathrm{I}_{\mathrm{D}(\mathrm{PK})}$. Schottky barrier diodes are often favored for use in switching regulators. Their low forward voltage drop allows higher regulator efficiency than if a (less expensive) fast recovery diode was used. See Table 4 for recommended part numbers and voltage ratings of 1A and 3A diodes.

Table 4. Diode Selection Chart

| Vout | Schottky |  | Fast Recovery |  |
| :---: | :---: | :---: | :---: | :---: |
| (max) | 1A | 3A | 1A | 3A |
| 20 V | 1N5817 | 1N5820 |  |  |
|  | MBR120P | MBR320P |  |  |
|  | 1N5818 | 1N5821 |  |  |
| 30 V | MBR130P | MBR330P |  |  |
|  | 11DQ03 | 31DQ03 |  |  |
|  | 1N5819 | 1N5822 |  |  |
|  | MBR140P | MBR340P |  |  |
|  | 11DQ04 | 31DQ04 |  | MR851 |
|  | MBR150 | MBR350 | 1N4933 | 30DL1 |
|  | $11 D Q 05$ | $31 D Q 05$ | MUR105 | MR831 |
|  |  |  | HER102 | HER302 |

## BOOST REGULATOR CIRCUIT EXAMPLE

By adding a few external components (as shown in Figure 37), the LM2577 can be used to produce a regulated output voltage that is greater than the applied input voltage. Typical performance of this regulator is shown in Figure 38 and Figure 39. The switching waveforms observed during the operation of this circuit are shown in Figure 40.


Note: Pin numbers shown are for TO-220 (T) package.
Figure 37. Step-up Regulator Delivers 12V from a 5V Input


Figure 38. Line Regulation (Typical) of Step-Up Regulator of Figure 37


A: Output Voltage Change, $100 \mathrm{mV} / \mathrm{div}$. (AC-coupled)
B: Load current, 0.2 A/div
Horizontal: 5 ms/div
Figure 39. Load Transient Response of Step-Up Regulator of Figure 37


A: Switch pin voltage, $10 \mathrm{~V} / \mathrm{div}$
B: Switch pin current, 2 A/div
C: Inductor current, 2 A/div
D: Output ripple voltage, $100 \mathrm{mV} /$ div (AC-coupled)
Horizontal: $5 \mu \mathrm{~s} / \mathrm{div}$
Figure 40. Switching Waveforms of Step-Up Regulator of Figure 37

## FLYBACK REGULATOR

A Flyback regulator can produce single or multiple output voltages that are lower or greater than the input supply voltage. Figure 42 shows the LM1577/LM2577 used as a flyback regulator with positive and negative regulated outputs. Its operation is similar to a step-up regulator, except the output switch contols the primary current of a flyback transformer. Note that the primary and secondary windings are out of phase, so no current flows through secondary when current flows through the primary. This allows the primary to charge up the transformer core when the switch is on. When the switch turns off, the core discharges by sending current through the secondary, and this produces voltage at the outputs. The output voltages are controlled by adjusting the peak primary current, as described in the STEP-UP (BOOST) REGULATOR section.

Voltage and current waveforms for this circuit are shown in Figure 41, and formulas for calculating them are given in Table 5.

## FLYBACK REGULATOR DESIGN PROCEDURE

## 1. Transformer Selection

A family of standardized flyback transformers is available for creating flyback regulators that produce dual output voltages, from $\pm 10 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$, as shown in Figure 42 . Table 6 lists these transformers with the input voltage, output voltages and maximum load current they are designed for.

## 2. Compensation Network ( $C_{C}, \boldsymbol{R}_{C}$ ) and Output Capacitor (Cout) Selection

As explained in the Step-Up Regulator Design Procedure, $\mathrm{C}_{\mathrm{C}}, \mathrm{R}_{\mathrm{C}}$ and $\mathrm{C}_{\mathrm{out}}$ must be selected as a group. The following procedure is for a dual output flyback regulator with equal turns ratios for each secondary (i.e., both output voltages have the same magnitude). The equations can be used for a single output regulator by changing $\sum I_{\text {LOAD(max) }}$ to $\mathrm{I}_{\mathrm{LOAD}(\text { max })}$ in the following equations.
A. First, calculate the maximum value for $\mathbf{R}_{\mathrm{C}}$.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{C}} \leq \frac{750 \times \mathrm{I}_{\mathrm{LOAD}(\max )} \times\left(15 \mathrm{~V}+\mathrm{V}_{\mathrm{IN}(\min )} \mathrm{N}\right)^{2}}{\mathrm{~V}_{\mathrm{IN}(\min )^{2}}} \tag{15}
\end{equation*}
$$

Where $\sum I_{\text {LOAD(max) }}$ is the sum of the load current (magnitude) required from both outputs. Select a resistor less than or equal to this value, and no greater than $3 \mathrm{k} \Omega$.
B. Calculate the minimum value for $\Sigma \mathrm{C}_{\text {OUt }}$ (sum of $\mathrm{C}_{\text {OUt }}$ at both outputs) using the following two equations.

$$
\mathrm{C}_{\text {OUT }} \geq \frac{0.19 \times \mathrm{R}_{\mathrm{C}} \times \mathrm{L}_{\mathrm{P}} \times \Sigma \mathrm{I}_{\mathrm{LOAD}(\max )}}{15 \mathrm{~V} \times \mathrm{V}_{\operatorname{IN}(\min )}}
$$

and

$$
\begin{equation*}
\mathrm{C}_{\text {OUT }} \geq \frac{\mathrm{V}_{\text {IN }(\min )} \times \mathrm{R}_{\mathrm{C}} \times \mathrm{N}^{2} \times\left(\mathrm{V}_{\text {IN }(\min )}+\left(3.74 \times 10^{5} \times \mathrm{L}_{\mathrm{P}}\right)\right)}{487,800 \times(15 \mathrm{~V})^{2} \times\left(15 \mathrm{~V}+\mathrm{V}_{\mathrm{IN}(\min )} \times \mathrm{N}\right)} \tag{16}
\end{equation*}
$$

The larger of these two values must be used to ensure regulator stability.


Figure 41. Flyback Regulator Waveforms


T1 = Pulse Engineering, PE-65300 D1, D2 = 1N5821

Figure 42. LM1577-ADJ/LM2577-ADJ Flyback Regulator with $\pm$ Outputs

Table 5. Flyback Regulator Formulas

| Duty Cycle | D | $\frac{V_{\text {OUT }}+V_{F}}{N\left(V_{\text {IN }}-V_{\text {SAT }}\right)+V_{\text {OUT }}+V_{F}} \approx$ | (17) |
| :---: | :---: | :---: | :---: |
| Primary Current Variation | $\Delta l_{p}$ | $\frac{D\left(V_{I N}-V_{S A T}\right)}{L_{P} \times 52,000}$ | (18) |

Table 5. Flyback Regulator Formulas (continued)

| Peak Primary Current | $\mathrm{l}_{\mathrm{P}(\mathrm{PK})}$ | $\frac{\mathrm{N}}{\eta} \times \frac{\Sigma \mathrm{I}_{\mathrm{LOAD}}}{1-\mathrm{D}}+\frac{\Delta \mathrm{l}_{\mathrm{PK}}}{2}$ | (19) |
| :---: | :---: | :---: | :---: |
| Switch Voltage when Off | $\mathrm{V}_{\text {SW(OFF) }}$ | $\mathrm{V}_{\text {IN }}+\frac{\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{F}}}{\mathrm{N}}$ | (20) |
| Diode Reverse Voltage | $\mathrm{V}_{\mathrm{R}}$ | $\mathrm{V}_{\text {OUT }}{ }^{+} \mathrm{N}\left(\mathrm{V}_{\text {IN }}{ }^{-} \mathrm{V}_{\text {SAT }}\right)$ |  |
| Average Diode Current | $\mathrm{I}_{\mathrm{D}(\text { AVE })}$ | ILOAD |  |
| Peak Diode Current | $\mathrm{I}_{\mathrm{D}(\mathrm{PK})}$ |  | (21) |
| Short Circuit Diode Current |  | $\approx \frac{6 \mathrm{~A}}{\mathrm{~N}}$ | (22) |
| Power Dissipation of LM1577/LM2577 | $\mathrm{P}_{\mathrm{D}}$ | $\begin{gathered} 0.25 \Omega\left(\frac{N \Sigma I_{\text {LOAD }}}{1-D}\right)^{2}+ \\ \frac{N I_{\text {LOAD }}}{50(1-D)} V_{I N} \end{gathered}$ | (23) |

$$
\begin{aligned}
& \mathrm{N}=\text { Transformer Turns Ratio }=\frac{\text { number of secondary turns }}{\text { number of primary turns }} \\
& \eta=\text { Transformer Efficiency (typically } 0.95 \text { ) } \\
& \left.\Sigma\right|_{\text {LOAD }}=\left|+\left.\right|_{\text {LOAD }}\right|+\left|-\left.\right|_{\text {LOAD }}\right|
\end{aligned}
$$

C. Calculate the minimum value of $C_{C}$

$$
\begin{equation*}
\mathrm{C}_{\mathrm{C}} \geq \frac{58.5 \times \mathrm{C}_{\text {OUT }} \times \mathrm{V}_{\text {OUT }} \times\left(\mathrm{V}_{\text {OUT }}+\left(\mathrm{V}_{\text {IN }(\text { min })} \times \mathrm{N}\right)\right)}{\mathrm{R}_{\mathrm{C}}{ }^{2} \times \mathrm{V}_{\text {IN }(\text { min })} \times \mathrm{N}} \tag{24}
\end{equation*}
$$

D. Calculate the maximum $E S R$ of the $+\mathrm{V}_{\mathrm{OUT}}$ and $-\mathrm{V}_{\mathrm{OUT}}$ output capacitors in parallel.

$$
\begin{equation*}
\mathrm{ESR}+\| \text { ESR }_{-} \leq \frac{8.7 \times 10^{-3} \times \mathrm{V}_{\text {IN(min) }} \times \mathrm{V}_{\text {OUT }} \times \mathrm{N}}{\Sigma \mathrm{I}_{\mathrm{LOAD}(\text { max })} \times\left(\mathrm{V}_{\text {OUT }}{ }^{+}\left(\mathrm{V}_{\mathrm{IN}(\text { min })} \times \mathrm{N}\right)\right)} \tag{25}
\end{equation*}
$$

This formula can also be used to calculate the maximum ESR of a single output regulator.
At this point, refer to this same section in the STEP-UP REGULATOR DESIGN PROCEDURE section for more information regarding the selection of $\mathrm{C}_{\text {out }}$.

## 3. Output Voltage Selection

This section is for applications using the LM1577-ADJ/LM2577-ADJ. Skip this section if the LM1577-12/LM257712 or LM1577-15/LM2577-15 is being used.
With the LM1577-ADJ/LM2577-ADJ, the output voltage is given by

$$
\begin{equation*}
\mathrm{V}_{\text {OUT }}=1.23 \mathrm{~V}(1+\mathrm{R} 1 / \mathrm{R} 2) \tag{26}
\end{equation*}
$$

Resistors R1 and R2 divide the output voltage down so it can be compared with the LM1577-ADJ/LM2577-ADJ internal 1.23 V reference. For a desired output voltage $\mathrm{V}_{\text {OUT }}$, select R 1 and R 2 so that

$$
\begin{equation*}
\frac{\mathrm{R} 1}{\mathrm{R} 2}=\frac{\mathrm{V}_{\text {OUT }}}{1.23 \mathrm{~V}}-1 \tag{27}
\end{equation*}
$$

## 4. Diode Selection

The switching diode in a flyback converter must withstand the reverse voltage specified by the following equation.

$$
\begin{equation*}
V_{R}=V_{\text {OUT }}+\frac{V_{\mathbb{N}}}{N} \tag{28}
\end{equation*}
$$

A suitable diode must have a reverse voltage rating greater than this. In addition it must be rated for more than the average and peak diode currents listed in Table 5.

## 5. Input Capacitor Selection

The primary of a flyback transformer draws discontinuous pulses of current from the input supply. As a result, a flyback regulator generates more noise at the input supply than a step-up regulator, and this requires a larger bypass capacitor to decouple the LM1577/LM2577 $\mathrm{V}_{\mathrm{IN}}$ pin from this noise. For most applications, a low ESR, 1.0 $\mu \mathrm{F}$ cap will be sufficient, if it is connected very close to the $\mathrm{V}_{\mathrm{IN}}$ and Ground pins.

| Transformer |  | Input | Dual | Maximum |
| :---: | :---: | :---: | :---: | :---: |
| Type |  |  | Voltage | Output |
|  |  |  | Voltage | Output |
|  | $\mathrm{L}_{P}=100 \mu \mathrm{H}$ | 5 V | $\pm 10 \mathrm{~V}$ | Current |
| 1 | $\mathrm{~N}=1$ | 5 V | $\pm 12 \mathrm{~V}$ | 325 mA |
|  |  | 5 V | $\pm 15 \mathrm{~V}$ | 275 mA |
|  |  | 10 V | $\pm 10 \mathrm{~V}$ | 225 mA |
|  |  | 10 V | $\pm 12 \mathrm{~V}$ | 700 mA |
| 2 |  | 10 V | $\pm 15 \mathrm{~V}$ | 575 mA |
|  | $\mathrm{~L}=200 \mu \mathrm{H}$ | 12 V | $\pm 10 \mathrm{~V}$ | 500 mA |
|  | $\mathrm{~N}=0.5$ | 12 V | $\pm 12 \mathrm{~V}$ | 800 mA |
|  |  | 12 V | $\pm 15 \mathrm{~V}$ | 700 mA |
| 3 |  | 15 V | $\pm 10 \mathrm{~V}$ | 575 mA |
|  | $\mathrm{~L}=250 \mu \mathrm{H}$ | 15 V | $\pm 12 \mathrm{~V}$ | 900 mA |
|  | $\mathrm{~N}=0.5$ | 15 V | $\pm 15 \mathrm{~V}$ | 825 mA |

Table 6. Flyback Transformer Selection Guide

| Transformer | Manufacturers' Part Numbers |  |  |
| :---: | :---: | :---: | :---: |
| Type | AIE | Pulse | Renco |
| 1 | $326-0637$ | PE-65300 | RL-2580 |
| 2 | $330-0202$ | PE-65301 | RL-2581 |
| 3 | $330-0203$ | PE-65302 | RL-2582 |

In addition to this bypass cap, a larger capacitor $(\geq 47 \mu \mathrm{~F})$ should be used where the flyback transformer connects to the input supply. This will attenuate noise which may interfere with other circuits connected to the same input supply voltage.

## 6. Snubber Circuit

A "snubber" circuit is required when operating from input voltages greater than 10V, or when using a transformer with $L_{p} \geq 200 \mu \mathrm{H}$. This circuit clamps a voltage spike from the transformer primary that occurs immediately after the output switch turns off. Without it, the switch voltage may exceed the 65 V maximum rating. As shown in Figure 43, the snubber consists of a fast recovery diode, and a parallel RC. The RC values are selected for switch clamp voltage ( $\mathrm{V}_{\mathrm{CLAMP}}$ ) that is 5 V to 10 V greater than $\mathrm{V}_{\mathrm{SW}(\mathrm{OFF})}$. Use the following equations to calculate R and C ;

$$
\begin{align*}
& \left.\mathrm{C} \geq \frac{\left.0.02 \times \mathrm{Lp} \times \mathrm{I}_{\mathrm{P}(\mathrm{PK})^{2}}^{\left(\mathrm{V}_{\mathrm{CLAMP}}{ }^{2}-(\mathrm{VSW}\right.}(\mathrm{OFF})\right)^{2}}{2}\right)^{2} \times\left(\frac{19.2 \times 10^{-4}}{\mathrm{~L}_{\mathrm{P}} \times \mathrm{I}_{\mathrm{P}(\mathrm{PK})^{2}}}\right) \\
& \mathrm{R} \leq\left(\frac{\mathrm{V}_{\mathrm{CLAMP}}+\mathrm{V}_{\mathrm{SW}(\mathrm{OFF})}-\mathrm{V}_{\mathrm{IN}}}{2}\right. \tag{29}
\end{align*}
$$

Power dissipation (and power rating) of the resistor is;

$$
\begin{equation*}
\mathrm{P}=\left(\frac{\mathrm{V}_{\mathrm{CLAMP}}+\mathrm{V}_{\mathrm{SW}(\mathrm{OFF})}-\mathrm{V}_{\mathrm{IN}}}{2}\right)^{2} / \mathrm{R} \tag{30}
\end{equation*}
$$

The fast recovery diode must have a reverse voltage rating greater than $\mathrm{V}_{\text {CLAMP }}$.


Figure 43. Snubber Circuit

## FLYBACK REGULATOR CIRCUIT EXAMPLE

The circuit of Figure 44 produces $\pm 15 \mathrm{~V}$ (at 225 mA each) from a single 5 V input. The output regulation of this circuit is shown in Figure 45 and Figure 47, while the load transient response is shown in Figure 46 and Figure 48. Switching waveforms seen in this circuit are shown in Figure 49.


T1 = Pulse Engineering, PE-65300
D1, D2 $=1$ N5821
Figure 44. Flyback Regulator Easily Provides Dual Outputs


Figure 45. Line Regulation (Typical) of Flyback
Regulator of Figure 44, +15V Output


A: Output Voltage Change, $100 \mathrm{mV} / \mathrm{div}$
B: Output Current, $100 \mathrm{~mA} / \mathrm{div}$
Horizontal: $\mathbf{1 0 ~ m s / d i v}$
Figure 46. Load Transient Response of Flyback Regulator of Figure 44, +15V Output


Figure 47. Line Regulation (Typical) of Flyback
Regulator of Figure 44, -15V Output


A: Output Voltage Change, $100 \mathrm{mV} /$ div
B: Output Current, $100 \mathrm{~mA} / \mathrm{div}$
Horizontal: $\mathbf{1 0} \mathbf{~ m s} /$ div
Figure 48. Load Transient Response of Flyback
Regulator of Figure 44, -15V Output


A: Switch pin voltage, $20 \mathrm{~V} / \mathrm{div}$
B: Primary current, 2 A/div
C: +15V Secondary current, 1 A/div
D: +15 V Output ripple voltage, $100 \mathrm{mV} / \mathrm{div}$
Horizontal: $5 \mu \mathrm{~s} / \mathrm{div}$
Figure 49. Switching Waveforms of Flyback Regulator of Figure 44, Each Output Loaded with $60 \Omega$

## REVISION HISTORY

[^0]4 Tia Texas Instruments

## PACKAGING INFORMATION

| Orderable Device | Status <br> (1) | Package Type | Package Drawing | Pins | Package Qty | Eco Plan <br> (2) | Lead/Ball Finish <br> (6) | MSL Peak Temp <br> (3) | Op Temp ( ${ }^{\circ} \mathrm{C}$ ) | Device Marking <br> (4/5) | Samples |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LM2577M-ADJ/NOPB | LIFEBUY | SOIC | DW | 24 | 30 | Green (RoHS \& no Sb/Br) | CU SN | Level-3-260C-168 HR | -40 to 125 | LM2577M <br> -ADJ P+ |  |
| LM2577N-ADJ/NOPB | LIFEBUY | PDIP | NBG | 16 | 20 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU SN | Level-1-NA-UNLIM | -40 to 125 | $\begin{aligned} & \text { LM2577N-ADJ } \\ & \mathrm{P}_{+} \end{aligned}$ |  |
| LM2577S-12/NOPB | LIFEBUY | $\begin{array}{r} \hline \text { DDPAK/ } \\ \text { TO-263 } \end{array}$ | KTT | 5 | 45 | Pb-Free (RoHS Exempt) | CU SN | Level-3-245C-168 HR | -40 to 125 | $\begin{aligned} & \text { LM2577S } \\ & -12 P_{+} \end{aligned}$ |  |
| LM2577S-ADJ | NRND | $\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$ | KTT | 5 | 45 | TBD | Call TI | Call TI | -40 to 125 | $\begin{aligned} & \text { LM2577S } \\ & \text {-ADJ P+ } \end{aligned}$ |  |
| LM2577S-ADJ/NOPB | ACTIVE | $\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$ | KTT | 5 | 45 | Pb-Free (RoHS Exempt) | CU SN | Level-3-245C-168 HR | -40 to 125 | $\begin{aligned} & \text { LM2577S } \\ & \text {-ADJ P+ } \end{aligned}$ | Samples |
| LM2577SX-12/NOPB | LIFEBUY | $\begin{aligned} & \text { DDPAK/ } \\ & \text { TO-263 } \end{aligned}$ | KTT | 5 | 500 | Pb-Free (RoHS Exempt) | CU SN | Level-3-245C-168 HR | -40 to 125 | $\begin{aligned} & \text { LM2577S } \\ & -12 P_{+} \end{aligned}$ |  |
| LM2577SX-ADJ | NRND | $\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$ | KTT | 5 | 500 | TBD | Call TI | Call TI | -40 to 125 | LM2577S <br> -ADJ P+ |  |
| LM2577SX-ADJ/NOPB | ACTIVE | $\begin{gathered} \text { DDPAK/ } \\ \text { TO-263 } \end{gathered}$ | KTT | 5 | 500 | Pb-Free (RoHS Exempt) | CU SN | Level-3-245C-168 HR | -40 to 125 | LM2577S <br> -ADJ P+ | Samples |
| LM2577T-12 | LIFEBUY | TO-220 | KC | 5 | 45 | TBD | Call TI | Call TI | -40 to 125 | $\begin{aligned} & \text { LM2577T-12 } \\ & \mathrm{P}_{+} \end{aligned}$ |  |
| LM2577T-12/LB03 | NRND | TO-220 | NDH | 5 |  | TBD | Call TI | Call TI |  | $\begin{aligned} & \text { LM2577T-12 } \\ & \mathrm{P}_{+} \end{aligned}$ |  |
| LM2577T-12/LF03 | LIFEBUY | TO-220 | NDH | 5 | 45 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU SN | Level-1-NA-UNLIM |  | $\begin{aligned} & \text { LM2577T-12 } \\ & \mathrm{P}_{+} \end{aligned}$ |  |
| LM2577T-12/NOPB | LIFEBUY | TO-220 | KC | 5 | 45 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU SN | Level-1-NA-UNLIM | -40 to 125 | $\begin{aligned} & \text { LM2577T-12 } \\ & \mathrm{P}_{+} \end{aligned}$ |  |
| LM2577T-15 | LIFEBUY | TO-220 | KC | 5 | 45 | TBD | Call TI | Call TI | -40 to 125 | $\begin{aligned} & \text { LM2577T-15 } \\ & P_{+} \end{aligned}$ |  |
| LM2577T-15/LB03 | LIFEBUY | TO-220 | NDH | 5 | 45 | TBD | Call TI | Call TI |  | $\begin{aligned} & \text { LM2577T-15 } \\ & \text { P+ } \end{aligned}$ |  |
| LM2577T-15/NOPB | LIFEBUY | TO-220 | KC | 5 | 45 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU SN | Level-1-NA-UNLIM | -40 to 125 | $\begin{aligned} & \text { LM2577T-15 } \\ & \mathrm{P}_{+} \end{aligned}$ |  |
| LM2577T-ADJ | NRND | TO-220 | KC | 5 | 45 | TBD | Call TI | Call TI | -40 to 125 | $\begin{aligned} & \text { LM2577T } \\ & \text {-ADJ } \\ & \mathrm{P}_{+} \\ & \hline \end{aligned}$ |  |
| LM2577T-ADJ/LB02 | NRND | TO-220 | NEB | 5 |  | TBD | Call TI | Call TI |  | LM2577T |  |


| Orderable Device | Status (1) | Package Type | Package Drawing | Pins | Package Qty | Eco Plan <br> (2) | Lead/Ball Finish <br> (6) | MSL Peak Temp <br> (3) | Op Temp ( ${ }^{\circ} \mathrm{C}$ ) | Device Marking (4/5) | Samples |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \hline-\mathrm{ADJ} \\ & \mathrm{P}_{+} \end{aligned}$ |  |
| LM2577T-ADJ/LB03 | NRND | TO-220 | NDH | 5 | 45 | TBD | Call TI | Call TI |  | $\begin{aligned} & \text { LM2577T } \\ & \text {-ADJ } \\ & \mathrm{P}_{+} \\ & \hline \end{aligned}$ |  |
| LM2577T-ADJ/LF03 | ACTIVE | TO-220 | NDH | 5 | 45 | Green (RoHS \& no Sb/Br) | CU SN | Level-1-NA-UNLIM |  | $\begin{aligned} & \text { LM2577T } \\ & \text {-ADJ } \\ & \mathrm{P}_{+} \\ & \hline \end{aligned}$ | Samples |
| LM2577T-ADJ/NOPB | ACTIVE | TO-220 | KC | 5 | 45 | Pb-Free (RoHS Exempt) | CU SN | Level-1-NA-UNLIM | -40 to 125 | $\begin{aligned} & \text { LM2577T } \\ & \text {-ADJ } \\ & \mathrm{P}_{+} \end{aligned}$ | Samples |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): Tl defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed $0.1 \%$ by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## TAPE AND REEL INFORMATION



| *All dimensions are nominal |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Device | Package <br> Type | Package <br> Drawing | Pins | SPQ | Reel <br> Diameter <br> $(\mathbf{m m})$ | Reel <br> Width <br> $\mathbf{W 1}(\mathbf{m m})$ | A0 <br> $(\mathbf{m m})$ | B0 <br> $(\mathbf{m m})$ | K0 <br> $(\mathbf{m m})$ | P1 <br> $(\mathbf{m m})$ | $\mathbf{W}$ <br> $(\mathbf{m m})$ | Pin1 <br> Quadrant |
| LM2577SX-12/NOPB | DDPAK/ <br> TO-263 | KTT | 5 | 500 | 330.0 | 24.4 | 10.75 | 14.85 | 5.0 | 16.0 | 24.0 | Q2 |
| LM2577SX-ADJ | DDPAK/ <br> TO-263 | KTT | 5 | 500 | 330.0 | 24.4 | 10.75 | 14.85 | 5.0 | 16.0 | 24.0 | Q2 |
| LM2577SX-ADJ/NOPB | DDPAK/ <br> TO-263 | KTT | 5 | 500 | 330.0 | 24.4 | 10.75 | 14.85 | 5.0 | 16.0 | 24.0 | Q2 |


*All dimensions are nomina

| Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LM2577SX-12/NOPB | DDPAK/TO-263 | KTT | 5 | 500 | 367.0 | 367.0 | 45.0 |
| LM2577SX-ADJ | DDPAK/TO-263 | KTT | 5 | 500 | 367.0 | 367.0 | 45.0 |
| LM2577SX-ADJ/NOPB | DDPAK/TO-263 | KTT | 5 | 500 | 367.0 | 367.0 | 45.0 |

## NDH0005D




DW (R-PDSO-G24) PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AD.



KC (R-PSFM-T5)
PLASTIC FLANGE-MOUNT PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. All lead dimensions apply before solder dip.
D. The center lead is in electrical contact with the mounting tab.

E These features are optional.
A Thermal pad contour optional within these dimensions.

## IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

## Products

Audio
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
OMAP Applications Processors
Wireless Connectivity

## Applications

Automotive and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging

## TI E2E Community

www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video
e2e.ti.com
www.ti.com/wirelessconnectivity


[^0]:    - Changed layout of National Data Sheet to TI format29

