

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at <u>www.hestore.hu</u>.

MBR1635, MBR1645, MBRB1645, NRVBB1645

Switch Mode Power Rectifiers 16 A, 35 and 45 V

These state-of-the-art devices use the Schottky Barrier principle with a platinum barrier metal.

Features

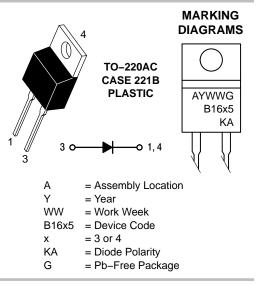
- Guard-ring for Stress Protection
- Low Forward Voltage
- 175°C Operating Junction Temperature
- NRVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

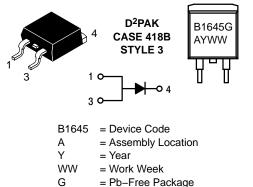
Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 Grams for TO–220 1.7 Grams for D²PAK
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MBR1635	V _{RRM} V _{RWM} V _R	35	V
MBR1645 MBRB1645		45 45	
Average Rectified Forward Current Delay (Rated V_R , T_C = 163°C) Total Device	I _{F(AV)}	16	A
Peak Repetitive Forward Current, Per Leg (Rated V _R , Square Wave, 20 kHz, T _C = 157°C) Total Device	I _{FRM}	32	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	1.0	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature (Note 1)	Τ _J	-65 to +175	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/µs


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MBR1635G	TO–220 (Pb–Free)	50 Units / Rail
MBR1645G	TO-220 (Pb-Free)	50 Units / Rail
MBRB1645T4G	D ² PAK (Pb–Free)	800 Units / Rail
NRVBB1645T4G	D ² PAK (Pb–Free)	800 Units / Rail

MBR1635, MBR1645, MBRB1645, NRVBB1645

THERMAL CHARACTERISTICS

Characteristic		Symbol	Value	Unit
Maximum Thermal Resistance, Junction-to-Case		$R_{ extsf{ heta}JC}$	1.5	°C/W

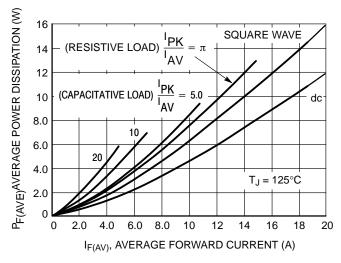
ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Instantaneous Forward Voltage (Note 2) ($i_F = 16 \text{ Amps}, T_C = 125^{\circ}C$) ($i_F = 16 \text{ Amps}, T_C = 25^{\circ}C$)	VF	0.57 0.63	V
Maximum Instantaneous Reverse Current (Note 2) (Rated dc Voltage, $T_C = 125^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	40 0.2	mA

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MBR1635, MBR1645, MBRB1645, NRVBB1645

Figure 3. Current Derating, Case, Per Leg


T_C, CASE TEMPERATURE (°C)

dc

SQUARE WAVE

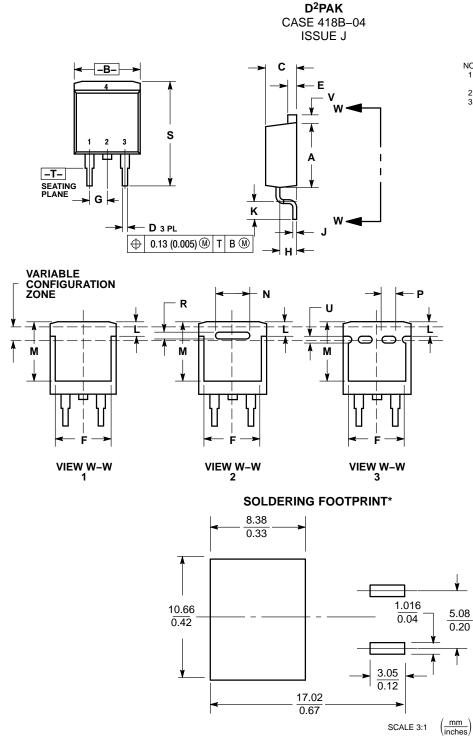

Figure 4. Current Derating, Ambient

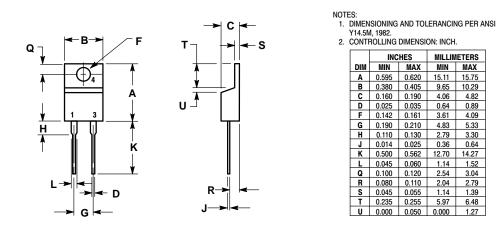
Figure 5. Forward Power Dissipation

MBR1635, MBR1645, MBRB1645, NRVBB1645

PACKAGE DIMENSIONS

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.340	0.380	8.64	9.65
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.83
D	0.020	0.035	0.51	0.89
E	0.045	0.055	1.14	1.40
F	0.310	0.350	7.87	8.89
G	0.100 BSC		2.54 BSC	
н	0.080	0.110	2.03	2.79
J	0.018	0.025	0.46	0.64
ĸ	0.090	0.110	2.29	2.79
L	0.052	0.072	1.32	1.83
M	0.280	0.320	7.11	8.13
N	0.197 REF		5.00 REF	
Р	0.079 REF		2.00 REF	
R	0.039 REF		0.99 REF	
S	0.575	0.625	14.60	15.88
v	0.045	0.055	1.14	1.40


STYLE 3:

PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TO-220 CASE 221B-04 ISSUE E

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components insystems intended to support or sustain life, or for any other application in which the failure of the SCILLC product out of use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees ansing out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright as and is not for resade in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative