

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at <u>www.hestore.hu</u>.

FGA25N120ANTD — 1200 V, 25 A NPT Trench IGBT

November 2013

FGA25N120ANTD 1200 V, 25 A NPT Trench IGBT

Features

- NPT Trench Technology, Positive Temperature Coefficient
- Low Saturation Voltage: V_{CE(sat), typ} = 2.0 V
 @ I_C = 25 A and T_C = 25°C
- Low Switching Loss: E_{off, typ} = 0.96 mJ @ I_C = 25 A and T_C = 25°C
- Extremely Enhanced Avalanche Capability

Applications

Induction Heating, Microwave Oven

G

Using Fairchild's proprietary trench design and advanced NPT

technology, the 1200V NPT IGBT offers superior conduction

nant or soft switching application such as induction heating,

and switching performances, high avalanche ruggedness and easy parallel operation. This device is well suited for the reso-

Description

microwave oven.

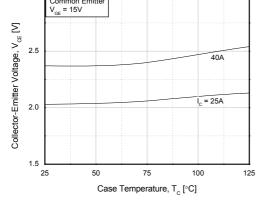
Absolute Maximum Ratings

Symbol	Description		Ratings	Unit
V _{CES}	Collector-Emitter Voltage		1200	V
V _{GES}	Gate-Emitter Voltage		± 20	V
I _C	Collector Current	@ T _C = 25°C	50	A
	Collector Current	@ T _C = 100°C	25	A
I _{CM (1)}	Pulsed Collector Current		90	A
I _F	Diode Continuous Forward Current	@ T _C = 25°C	50	A
	Diode Continuous Forward Current	@ T _C = 100°C	25	A
I _{FM}	Diode Maximum Forward Current		150	A
P _D	Maximum Power Dissipation	@ T _C = 25°C	312	W
	Maximum Power Dissipation	@ T _C = 100°C	125	W
TJ	Operating Junction Temperature		-55 to +150	٥C
T _{stg}	Storage Temperature Range		-55 to +150	٥C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	٥C

Notes:

(1) Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics


Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction-to-Case		0.4	°C/W
$R_{\theta JC}(DIODE)$	(DIODE) Thermal Resistance, Junction-to-Case		2.0	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

Part Nu	umber	Top Mark	Package	Packing Method	Reel Size	Tape V	Vidth	Quantity
FGA25N120ANTDTU FGA25N120ANTD TO-		TO-3P	Tube	N/A	N/A		30	
Electric	al Char	acteristics of	the IGB	$T_{C} = 25^{\circ}C$ unless otherwise n	oted			
Symbol		Parameter		Test Conditions	Min.	Тур.	Max	. Unit
Off Charac	teristics							
I _{CES}	i	Cut-Off Current	V	v _{CE} = V _{CES} , V _{GE} = 0 V			3	mA
I _{GES}	G-E Leakage Current			$V_{GE} = V_{GES}, V_{CE} = 0 V$			± 250	nA
GLU								
On Charac	teristics							
V _{GE(th)}	G-E Three	shold Voltage	I,	_C = 25 mA, V _{CE} = V _{GE}	3.5	5.5	7.5	V
V _{CE(sat)}	Collector			_C = 25 A, V _{GE} = 15 V		2.0		V
Saturation Voltage			_C = 25 Α, V _{GE} = 15 V, Γ _C = 125°C		2.15		V	
		١ _c	_C = 50 A, V _{GE} = 15 V		2.65		V	
Dynamic C	haracteris	tics						
C _{ies}	Input Cap	acitance	V _{CE} = 30 V, V _{GE} = 0 V,			3700		pF
C _{oes}	Output Ca	apacitance	f	= 1 MHz		130		pF
C _{res}	Reverse 1	Transfer Capacitance				80		pF
Switching	Characteri	stics			·			
t _{d(on)}	Turn-On E	Delay Time	V	′ _{CC} = 600 V, I _C = 25 A,		50		ns
t _r	Rise Time	9		$R_G = 10 \Omega$, $V_{GE} = 15 V$,		60		ns
t _{d(off)}	Turn-Off	Delay Time	Ir	nductive Load, T _C = 25°C		190		ns
t _f	Fall Time					100		ns
E _{on}	Turn-On S	Switching Loss				4.1		mJ
E _{off}	Turn-Off S	Switching Loss				0.96		mJ
E _{ts}	Total Swite	ching Loss				5.06		mJ
t _{d(on)}	Turn-On E	Delay Time	V	/ _{CC} = 600 V, I _C = 25 A,		50		ns
t _r	Rise Time		R	R _G = 10 Ω, V _{GE} = 15 V,		60		ns
t _{d(off)}	Turn-Off	Delay Time	Ir	nductive Load, T _C = 125°C		200		ns
t _f	Fall Time					154		ns
E _{on}	Turn-On S	Switching Loss				4.3		mJ
E _{off}	Turn-Off S	Switching Loss				1.5		mJ
E _{ts}	Total Swite	ching Loss				5.8		mJ
Q _g	Total Gate	Charge	V	r _{CE} = 600 V, I _C = 25 A,		200	-	nC
Q _{ge}	Gate-Emit	tter Charge		_{GE} = 15 V		15		nC
Q _{gc}		ector Charge				100		nC

۴Ģ
ð
Ñ
5Z
2
õ
ž
NTD
Ÿ
12
8
<
, 25
2
Ę
Ť
Ę
en
<u>c</u> h
h IGB
G
Ĩ

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{FM}	Diode Forward Voltage	I _F = 25 A	$T_{\rm C} = 25^{\circ}{\rm C}$		2.0	3.0	V
			T _C = 125°C		2.1		
t _{rr}	Diode Reverse Recovery Time	I _F = 25 A di _F /dt = 200 A/μs	$T_{\rm C} = 25^{\circ}{\rm C}$		235	350	ns
			T _C = 125°C		300		
I _{rr} Diode F rent	Diode Peak Reverse Recovery Cur-		T _C = 25°C		27	40	А
	rent		T _C = 125°C		31		
Q _{rr}	Diode Reverse Recovery Charge		$T_{\rm C} = 25^{\circ}{\rm C}$		3130	4700	nC
			T _C = 125°C		4650		

Typical Performance Characteristics Figure 1. Typical Output Characteristics 180 = 25°C 20\ 17V 160 10\ 140 Collector Current, I_c [A] 120 9V 100 80 8V 60 40 7V 20 V_{GE} = 6V 0 4 6 8 10 0 2 Collector-Emitter Voltage, V_{CE} [V] Figure 3. Saturation Voltage vs. Case Temperature at Variant Current Level 3.0 Common Emitte V_{GE} = 15V

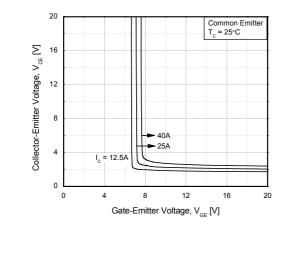


Figure 2. Typical Saturation Voltage Characteristics

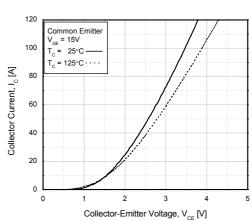


Figure 4. Saturation Voltage vs. V_{GE}

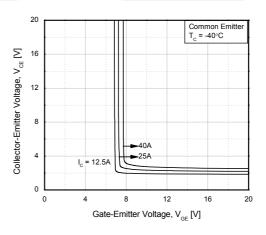
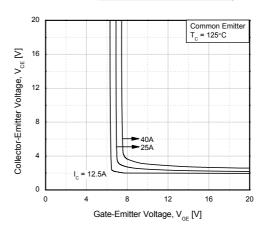
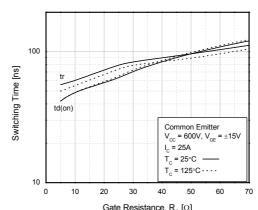
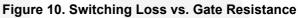



Figure 6. Saturation Voltage vs. V_{GE}


FGA25N120ANTD — 1200 V, 25 A NPT Trench IGBT


5000 Common Emitter $V_{GE} = 0V$, f = 1MHz $T_{C} = 25^{\circ}C$ 4500 Ciss 4000 100 3500 Switching Time [ns] Capacitance [pF] 3000 2500 td(on) 2000 1500 1000 Coss 500 Crss 0 10 10 0 10 20 30 40 1 Collector-Emitter Voltage, $V_{_{CE}}$ [V] Gate Resistance, R_{G} [Ω] Figure 9. Turn-Off Characteristics vs. **Gate Resistance** 1000 Common Emitter $V_{CC} = 600V, V_{GE} = \pm 15V$ $I_{C} = 25A$ td(off) T_c = 25°C -10 T_c = 125°C · · · · Switching Time [ns] Switching Loss [mJ] 100 tf Common Emitter $V_{\rm CC}$ = 600V, $V_{\rm GE}$ = ±15V = 25A 1 T_c = 25°C = 125°C · · · · Τ, 10 10 20 30 40 50 60 70 0 10 20 30 40 0 50 Gate Resistance, $R_{_{G}}[\Omega]$ Gate Resistance, $R_{G}[\Omega]$ Figure 11. Turn-On Characteristics vs. **Collector Current Collector Current** Common Emitter $V_{GE} = \pm 15V, R_{G} = 10\Omega$ T_c = 25°C -T_c = 125°C···· ti Switching Time [ns] Switching Time [ns] 100 100 td(on) Common Emitter $V_{ge} = \pm 15V, R_{g} = 10\Omega$ T_= 25°C T_ = 125°C · · · · 10 20 30 40 50 10 20 30 Collector Current, I_c [A] Collector Current, I_C [A] 5 ©2006 Fairchild Semiconductor Corporation FGA25N120ANTD Rev. C1

Typical Performance Characteristics (Continued)

Figure 7. Capacitance Characteristics

Figure 8. Turn-On Characteristics vs. Gate Resistance

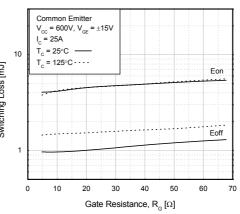
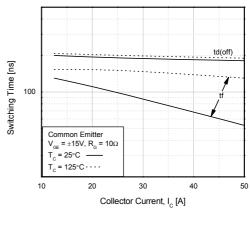
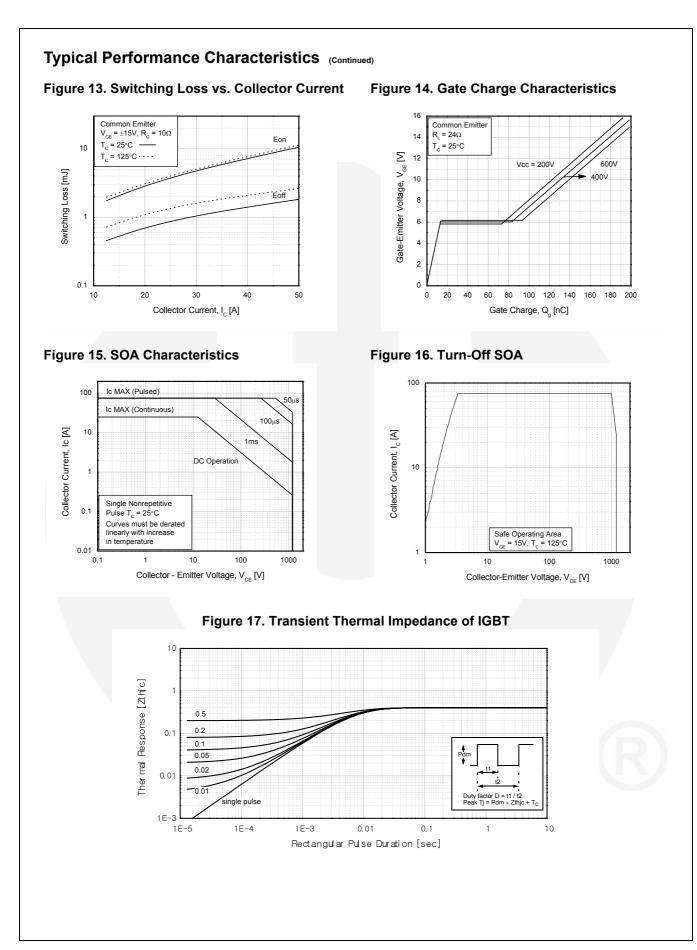
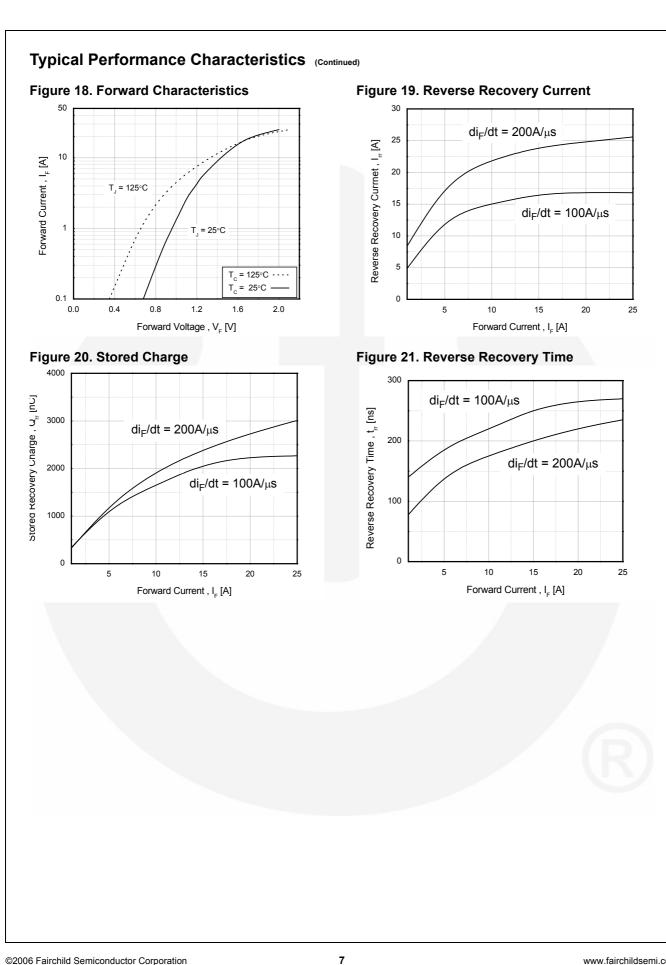
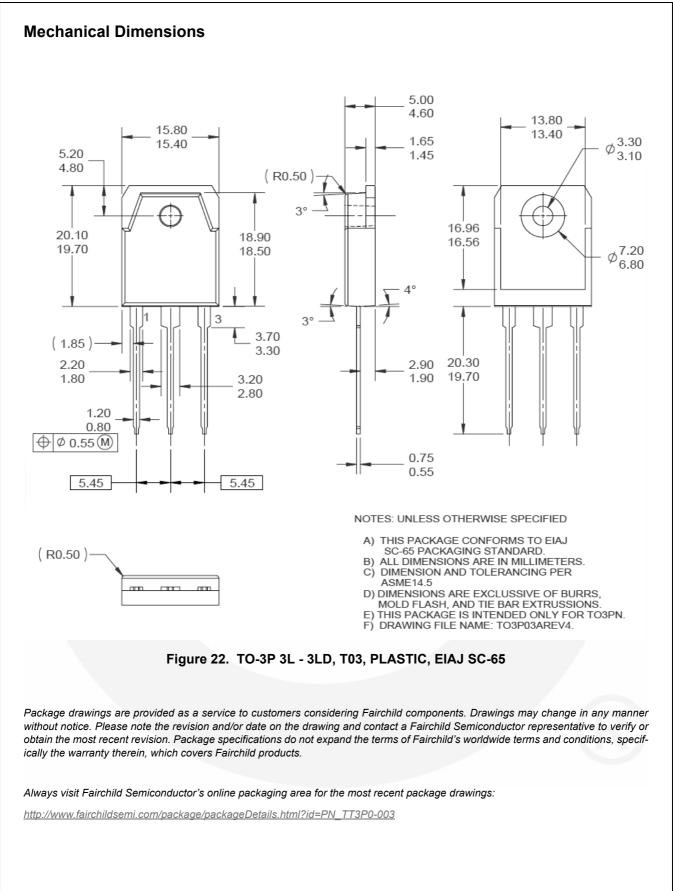






Figure 12. Turn-Off Characteristics vs.

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AX-CAP BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK[®] EfficentMax™ **ESBC**™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FPS™

FRFET® Global Power ResourceSM GreenBridge™ Green FPS™ Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck[™] MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver® OptoHiT™ **OPTOLOGIC**® **OPTOPLANAR[®]**

F-PFS™

()® PowerTrench[®] PowerXS™ Programmable Active Droop™ QFĔT QS™ Quiet Series™ RapidConfigure[™] тΝ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ **E**GENERAL^{®'} TinyBoost TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* µSerDes™ $\mu_{\scriptscriptstyle{\mathrm{Ser}}}$ **UHC®**

Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.