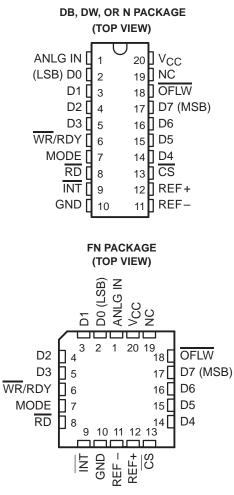


EN: This Datasheet is presented by the manufacturer.


Please visit our website for pricing and availability at <u>www.hestore.hu</u>.

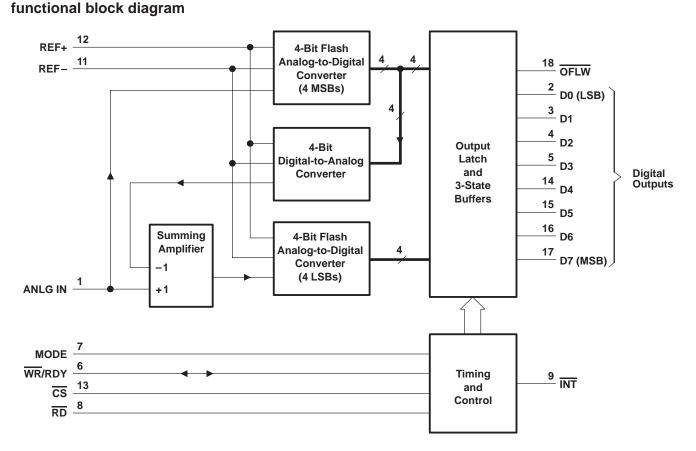
TLC0820AC, TLC0820AI Advanced LinCMOS[™] HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTERS USING MODIFIED FLASH TECHNIQUES SLAS064A – SEPTEMBER 1986 – REVISED JUNE 1994

- Advanced LinCMOS[™] Silicon-Gate Technology
- 8-Bit Resolution
- Differential Reference Inputs
- Parallel Microprocessor Interface
- Conversion and Access Time Over Temperature Range Read Mode . . . 2.5 μs Max
- No External Clock or Oscillator Components Required
- On-Chip Track and Hold
- Single 5-V Supply
- TLC0820A Is Direct Replacement for National Semiconductor ADC0820C/CC and Analog Devices AD7820K/B/T

description

The TLC0820AC and the TLC0820AI are Advanced LinCMOS[™] 8-bit analog-to-digital converters each consisting of two 4-bit flash converters, a 4-bit digital-to-analog converter, a summing (error) amplifier, control logic, and a result latch circuit. The modified flash technique allows low-power integrated circuitry to complete an 8-bit conversion in 1.18 µs over temperature. The on-chip track-and-hold circuit has a 100-ns sample window and allows these devices to convert continuous analog signals having slew rates of up to 100 mV/µs without external sampling components. TTL-compatible 3-state output drivers and two modes of operation allow

NC-No internal connection


interfacing to a variety of microprocessors. Detailed information on interfacing to most popular microprocessors is readily available from the factory.

AVAILABLE OF HONS										
	TOTAL	PACKAGE								
TA	UNADJUSTED ERROR	SSOP (DB)	PLASTIC SMALL OUTLINE (DW)	PLASTIC CHIP CARRIER (FN)	PLASTIC DIP (N)					
0°C to 70°C	±1 LSB	TLC0820ACDB	TLC0820ACDW	TLC0820ACFN	TLC0820ACN					
-40° C to 85° C	±1 LSB	_	TLC0820AIDW	TLC0820AIFN	TLC0820AIN					

AVAILABLE OPTIONS

Advanced LinCMOS is a trademark of Texas Instruments Incorporated.

TLC0820AC, TLC0820AI Advanced LinCMOSTM HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTERS USING MODIFIED FLASH TECHNIQUES SLAS064A – SEPTEMBER 1986 – REVISED JUNE 1994

TLC0820AC, TLC0820AI Advanced LinCMOS™ HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTERS USING MODIFIED FLASH TECHNIQUES

SLAS064A - SEPTEMBER 1986 - REVISED JUNE 1994

Terminal Functions											
TERMIN NAME	TERMINAL NAME NO.		DESCRIPTION								
ANLG IN	1	I	Analog input								
CS	13	I	Chip select. CS must be low in order for RD or WR to be recognized by the ADC.								
D0	2	0	Digital, 3-state output data, bit 1 (LSB)								
D1	3	0	Digital, 3-state output data, bit 2								
D2	4	0	Digital, 3-state output data, bit 3								
D3	5	0	Digital, 3-state output data, bit 4								
D4	14	0	Digital, 3-state output data, bit 5								
D5	15	0	Digital, 3-state output data, bit 6								
D6	16	0	Digital, 3-state output data, bit 7								
D7	17	0	Digital, 3-state output data, bit 8 (MSB)								
GND	10		Ground								
INT	9	0	Interrupt. In the write-read mode, the interrupt output (INT) going low indicates that the internal count-down delay time, $t_{d(int)}$, is complete and the data result is in the output latch. The delay time $t_{d(int)}$ is typically 800 ns starting after the rising edge of WR (see operating characteristics and Figure 3). If RD goes low prior to the end of $t_{d(int)}$, INT goes low at the end of $t_{d(RL)}$ and the conversion results are available sooner (see Figure 2). INT is reset by the rising edge of either RD or CS.								
MODE	7	I	Mode select. MODE is internally tied to GND through a $50-\mu$ A current source, which acts like a pulldown resistor. When MODE is low, the read mode is selected. When MODE is high, the write-read mode is selected.								
NC	19		No internal connection								
OFLW	18	0	Overflow. Normally \overline{OFLW} is a logical high. However, if the analog input is higher than V_{ref+} , \overline{OFLW} will be low at the end of conversion. It can be used to cascade two or more devices to improve resolution (9 or 10 bits).								
RD	8	I	Read. In the write-read mode with $\overline{\text{CS}}$ low, the 3-state data outputs D0 through D7 are activated when $\overline{\text{RD}}$ goes low. $\overline{\text{RD}}$ can also be used to increase the conversion speed by reading data prior to the end of the internal count-down delay time. As a result, the data transferred to the output latch is latched after the falling edge of $\overline{\text{RD}}$. In the read mode with $\overline{\text{CS}}$ low, the conversion starts with $\overline{\text{RD}}$ going low. $\overline{\text{RD}}$ also enables the 3-state data outputs on completion of the conversion. RDY going into the high-impedance state and $\overline{\text{INT}}$ going low indicate completion of the conversion.								
REF-	11	I	Reference voltage. REF – is placed on the bottom of the resistor ladder.								
REF+	12	I	Reference voltage. REF + is placed on the top of the resistor ladder.								
VCC	20		Power supply voltage								
WR/RDY	6	I/O	Write ready. In the write-read mode with \overline{CS} low, the conversion is started on the falling edge of the \overline{WR} input signal. The result of the conversion is strobed into the output latch after the internal count-down delay time, $t_{d(int)}$, provided that the \overline{RD} input does not go low prior to this time. The delay time $t_{d(int)}$ is approximately 800 ns. In the read mode, RDY (an open-drain output) goes low after the falling edge of \overline{CS} and goes into the high-impedance state when the conversion is strobed into the output latch. It is used to simplify the interface to a microprocessor system.								

TLC0820AC, TLC0820AI Advanced LinCMOS[™] HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL **CONVERTERS USING MODIFIED FLASH TECHNIQUES**

SLAS064A - SEPTEMBER 1986 - REVISED JUNE 1994

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)	10 V						
Input voltage range, all inputs (see Note 1)	.2 V to V _{CC} +0.2 V						
Output voltage range, all outputs (see Note 1)	.2 V to V _{CC} +0.2 V						
Operating free-air temperature range: TLC0820AC	0°C to 70°C						
TLC0820AI	–40°C to 85°C						
Storage temperature range	−65°C to 150°C						
Case temperature for 10 seconds: FN package							
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DB, DW or N package							

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltages are with respect to network GND.

recommended operating conditions

			MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	8	V		
Analog input voltage			-0.1		V _{CC} +0.1	V
Positive reference voltage, Vref+			V _{ref} -		VCC	V
Negative reference voltage, V _{ref-}			GND		V _{ref+}	V
	V _{CC} = 4.75 V to 5.25 V	CS, WR/RDY, RD	2			V
High-level input voltage, VIH	$VCC = 4.75 \ V \ 10 \ 5.25 \ V$	MODE	3.5			v
		CS, WR/RDY, RD			0.8	V
Low-level input voltage, VIL	V _{CC} = 4.75 V to 5.25 V MODE				1.5	v
Pulse duration, write in write-read mode, $t_{W(W)}$ (see F		0.5		50	μs	
Operating free cir temperature T.	TLC0820AC		0		70	°C
Operating free-air temperature, T _A	TLC0820AI	-40		85	C	

TLC0820AC, TLC0820AI Advanced LinCMOS™ HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTERS USING MODIFIED FLASH TECHNIQUES

SLAS064A - SEPTEMBER 1986 - REVISED JUNE 1994

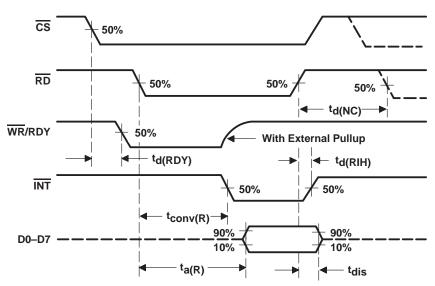
electrical characteristics at specified operating free-air temperature, $V_{CC} = 5 V$ (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	T _A †	MIN	TYP	MAX	UNIT
.,		$D0-D7$, \overline{INT} , or	V _{CC} = 4.75 V, I _{OH} = -360 μA	Full range	2.4			
Vон	High-level output voltage	OFLW	V _{CC} = 4.75 V,	Full range	4.5			V
			I _{OH} = -10 μA	25°C	4.6			
VOL	Low-level output voltage	D0-D7, OFLW, INT,	V _{CC} = 5.25 V,	Full range			0.4	V
VOL		or WR/RDY	I _{OL} = 1.6 mA	25°C			0.34	v
		CS or RD		Full range		0.005	1	
		WR/RDY		Full range			3	
IIН	High-level input current		VIH = 5 V	25°C		0.1	0.3	μΑ
		MODE		Full range			200	
		MODE		25°C		50	170	
۱ _{IL}	Low-level input current	CS, WR/RDY, RD, or MODE	V _{IL} = 0	Full range		-0.005	-1	μA
				Full range			3	μA
	Off-state (high-impedance-state)	D0-D7 or WR/RDY	V _O = 5 V	25°C		0.1	0.3	
IOZ output ci	output current	DU-D7 or WR/RDY		Full range			-3	
			$V_{O} = 0$	25°C		-0.1	-0.3	
		•	CS at 5 V, $V_1 = 5 V$	Full range			3	
ι.		urroat		25°C			0.3	μA
II.	Analog input current			Full range			-3	μΑ
			CS at 5 V, $V_{I} = 0$	25°C			-0.3	
		D0-D7, OFLW, INT,		Full range	7			
		or WR/RDY	V _O = 5 V	25°C	8.4	14		1
	Chart aircuit autout aurrant			Full range	-6			
los	Short-circuit output current	D0-D7 or OFLW		25°C	-7.2	-12		mA
		INIT	$V_{O} = 0$	Full range	-4.5			
		INT		25°C	- 5.3	-9		
D		•		Full range	1.25		6	1.0
R _{ref} Reference resistance				25°C	1.4	2.3	5.3	kΩ
I _{CC} Supp	Supply surrent		CS, WR/RDY, and	Full range			15	A
	Supply current		RD at 0 V	25°C		7.5	13	mA
0		D0-D7		E all ac a su		5		
с _і	Input capacitance	ANLG IN	1	Full range		45		pF
Co	Output capacitance	D0-D7		Full range			5	pF

[†] Full range is as specified in recommended operating conditions.

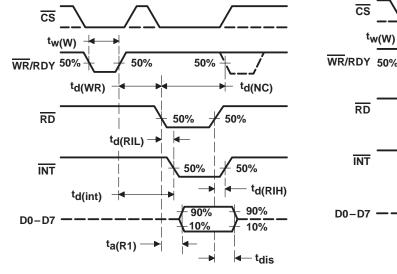
TLC0820AC, TLC0820AI Advanced LinCMOSTM HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTERS USING MODIFIED FLASH TECHNIQUES SLAS064A - SEPTEMBER 1986 - REVISED JUNE 1994

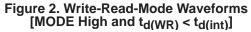
operating characteristics, V_{CC} = 5 V, V_{ref+} = 5 V, V_{ref-} = 0, t_r = t_f = 20 ns, T_A = 25°C (unless otherwise noted)

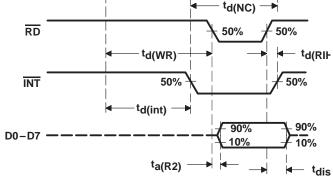

PARAMETER		TEST	CONDITIONS [†]	MIN TYP	MAX	UNIT
ksvs	Supply-voltage sensitivity	$V_{CC} = 5 V \pm 5\%,$	$T_A = MIN \text{ to } MAX$	±1/16	±1/4	LSB
	Total unadjusted error‡	MODE at 0 V,	$T_A = MIN$ to MAX		1	LSB
^t conv(R)	Conversion time, read mode	MODE at 0 V,	See Figure 1	1.6	2.5	μs
^t a(R)	Access time, $\overline{RD}\downarrow$ to data valid	MODE at 0 V,	See Figure 1	^t conv(R) +20	^t conv(R) +50	ns
	=	MODE at 5 V,	C _L = 15 pF	190	280	
^t a(R1)	Access time, $\overline{RD}\downarrow$ to data valid	^t d(WR) < ^t d(int), See Figure 2	C _L = 100 pF	210	320	ns
^t a(R2)		MODE at 5 V,	C _L = 15 pF	70	120	
	Access time, $\overline{RD}\downarrow$ to data valid	^t d(WR) > ^t d(int), See Figure 3	C _L = 100 pF	90	150	ns
^t a(INT)	Access time, $\overline{INT}\downarrow$ to data valid	MODE at 5 V,	See Figure 4	20	50	ns
^t dis	Disable time, $\overline{RD}\uparrow$ to data valid	$R_L = 1 k\Omega$, See Figures 1, 2, 3	CL = 10 pF, 3, and 5	70	95	ns
^t d(int)	Delay time, WR/RDY \uparrow to INT \downarrow	MODE at 5 V, See Figures 2, 3, a	C _L = 50 pF, and 4	800	1300	ns
^t d(NC)	Delay time, to next conversion	See Figures 1, 2, 3	3, and 4	500		ns
^t d(WR)	Delay time, WR/RDY↑ to RD↓ in write-read mode	See Figure 2		0.4		μs
^t d(RDY)	Delay time, CS \downarrow to WR/RDY \downarrow	MODE at 0 V, See Figure 1	C _L = 50 pF,	50	100	ns
^t d(RIH)	Delay time, RD↑ to INT↑	C _L = 50 pF,	See Figures 1, 2, and 3	125	225	ns
^t d(RIL)	Delay time, RD \downarrow to INT \downarrow	MODE at 5 V, See Figure 2	^t d(WR) < ^t d(int),	200	290	ns
^t d(WIH)	Delay time, WR/RDY↑ to INT↑	MODE at 5 V, See Figure 4	C _L = 50 pF,	175	270	ns
	Slew-rate tracking			0.1		V/µs

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] Total unadjusted error includes offset, full-scale, and linearity errors.

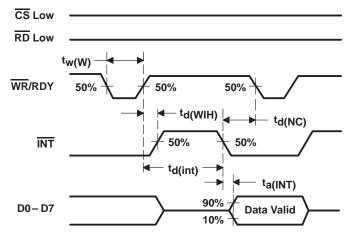


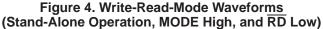

TLC0820AC, TLC0820AI Advanced LinCMOS[™] HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL **CONVERTERS USING MODIFIED FLASH TECHNIQUES** SLAS064A - SEPTEMBER 1986 - REVISED JUNE 1994

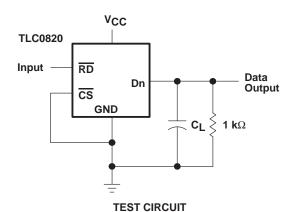


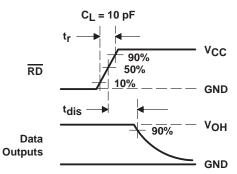
PARAMETER MEASUREMENT INFORMATION

50%

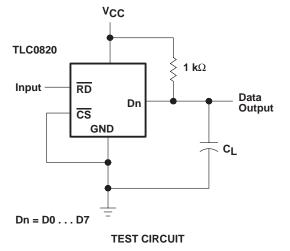

Figure 3. Write-Read-Mode Waveforms [MODE High and t_{d(WR)} > t_{d(int)}]

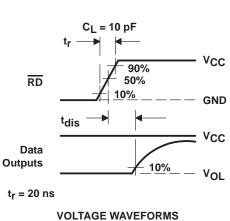


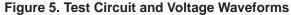

TLC0820AC, TLC0820AI Advanced LinCMOS™ HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTERS USING MODIFIED FLASH TECHNIQUES


SLAS064A - SEPTEMBER 1986 - REVISED JUNE 1994

PARAMETER MEASUREMENT INFORMATION






t_r = 20 ns

VOLTAGE WAVEFORMS

TLC0820AC, TLC0820AI Advanced LinCMOS[™] HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTERS USING MODIFIED FLASH TECHNIQUES

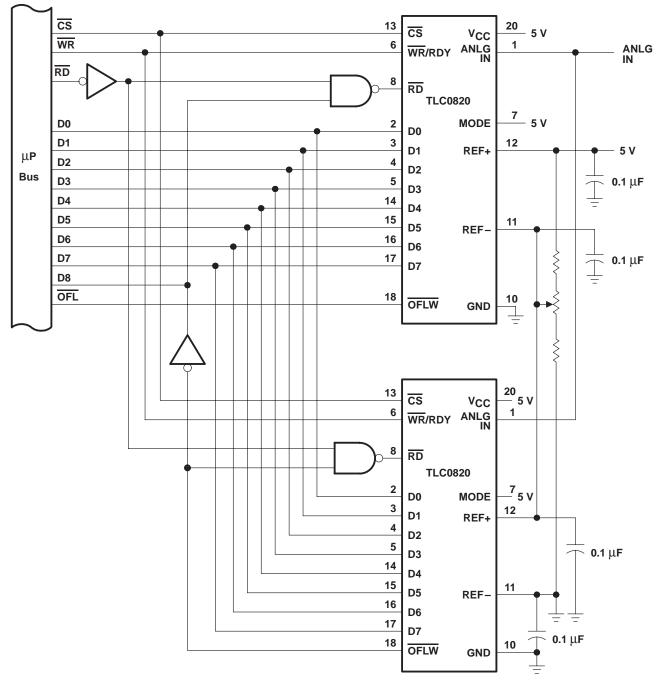
SLAS064A - SEPTEMBER 1986 - REVISED JUNE 1994

PRINCIPLES OF OPERATION

The TLC0820AC and TLC0820AI each employ a combination of sampled-data comparator techniques and flash techniques common to many high-speed converters. Two 4-bit flash analog-to-digital conversions are used to give a full 8-bit output.

The recommended analog input voltage range for conversion is -0.1 V to V_{CC} + 0.1 V. Analog input signals that are less than V_{ref} + 1/2 LSB or greater than V_{ref+} - 1/2 LSB convert to 0000000 or 11111111, respectively. The reference inputs are fully differential with common-mode limits defined by the supply rails. The reference input values define the full-scale range of the analog input. This allows the gain of the ADC to be varied for ratiometric conversion by changing the V_{ref+} and V_{ref-} voltages.

The device operates in two modes, read (only) and write-read, that are selected by MODE. The converter is set to the read (only) mode when MODE is low. In the read mode, WR/RDY is used as an output and is referred to as the ready terminal. In this mode, a low on WR/RDY while CS is low indicates that the device is busy. Conversion starts on the falling edge of RD and is completed no more than 2.5 µs later when INT falls and WR/RDY returns to the high-impedance state. Data outputs also change from high-impedance to active states at this time. After the data is read, RD is taken high, INT returns high, and the data outputs return to their high-impedance states.


When MODE is high, the converter is set to the write-read mode and \overline{WR}/RDY is referred to as the write terminal. Taking \overline{CS} and \overline{WR}/RDY low selects the converter and initiates measurement of the input signal. Approximately 600 ns after \overline{WR}/RDY returns high, the conversion is completed. Conversion starts on the rising edge of \overline{WR}/RDY in the write-read mode.

The high-order 4-bit flash ADC measures the input by means of 16 comparators operating simultaneously. A high-precision 4-bit DAC then generates a discrete analog voltage from the result of that conversion. After a time delay, a second bank of comparators does a low-order conversion on the analog difference between the input level and the high-order DAC output. The results from each of these conversions enter an 8-bit latch and are output to the 3-state output buffers on the falling edge of \overline{RD} .

TLC0820AC, TLC0820AI Advanced LinCMOS[™] HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL **CONVERTERS USING MODIFIED FLASH TECHNIQUES**

SLAS064A - SEPTEMBER 1986 - REVISED JUNE 1994

APPLICATION INFORMATION

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLC0820ACDB	ACTIVE	SSOP	DB	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P0820A	Samples
TLC0820ACDBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		P0820A	Samples
TLC0820ACDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		TLC0820A	Samples
TLC0820ACDWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		TLC0820A	Samples
TLC0820ACDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		TLC0820A	Samples
TLC0820ACDWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		TLC0820A	Samples
TLC0820ACFN	ACTIVE	PLCC	FN	20	46	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		TLC0820AC	Samples
TLC0820ACN	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC0820ACN	Samples
TLC0820ACNE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC0820ACN	Samples
TLC0820AIDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		TLC0820AI	Samples
TLC0820AIDWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		TLC0820AI	Samples
TLC0820AIDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		TLC0820AI	Samples
TLC0820AIDWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		TLC0820AI	Samples
TLC0820AIFN	ACTIVE	PLCC	FN	20	46	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		TLC0820AI	Samples
TLC0820AIN	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC0820AIN	Samples
TLC0820AINE4	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC0820AIN	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

www.ti.com

10-Jun-2014

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

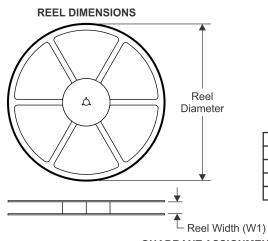
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

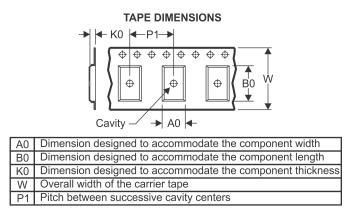
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

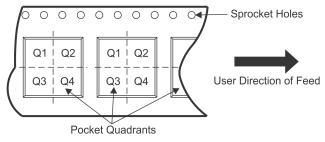
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

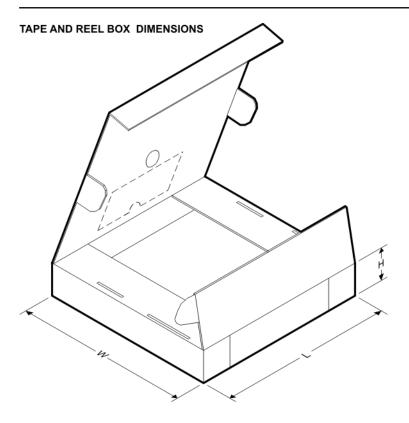

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC0820ACDBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
TLC0820ACDWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
TLC0820AIDWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

3-Jan-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC0820ACDBR	SSOP	DB	20	2000	367.0	367.0	38.0
TLC0820ACDWR	SOIC	DW	20	2000	367.0	367.0	45.0
TLC0820AIDWR	SOIC	DW	20	2000	367.0	367.0	45.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated