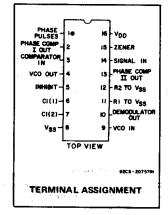


EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at <u>www.hestore.hu</u>.

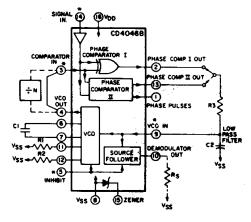
CMOS Micropower Phase-Locked Loop

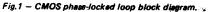
■ CD4046B CMOS Micropower Phase-Locked Loop (PLL) consists of a lowpower, linear voltage-controlled oscillator (VCO) and two different phase comparators having a common signal-input amplifier and a common comparator input. A 5.2-V zener diode is provided for supply regulation if necessary.


The CD4046B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

VCO Section

The VCO requires one external capacitor C1 and one or two external resistors (R1 or R1 and R2). Resistor R1 and capacitor C1 determine the frequency range of the VCO and resistor R2 enables the VCO to have a frequency offset if required. The high input impedance (1012 Ω) of the VCO simplifies the design of low-pass filters by permitting the designer a wide choice of resistor-tocapacitor ratios. In order not to load the low-pass filter, a source-follower output of the VCO input voltage is provided at terminal 10 (DEMODULATED OUTPUT). If this terminal is used, a load resistor (RS) of 10 $k\Omega$ or more should be connected from this terminal to VSS. If unused this terminal should be left open. The VCO can be connected either directly or through frequency dividers to the comparator input of the phase comparators. A full C'MOS logic swing is available at the output of the VCO and allows direct coupling to CMOS frequency dividers such as the RCA-CD4024, CD4018, CD4020, CD4022, CD4029, and CD4059 One or more CD4018 (Presettable Divide-by-N Counter) or CD4029 (Presettable Up/Down Counter), or CD4059A (Programmable Divide-by-"N" Counter), together with the CD4046B (Phase-Locked Loop) can be used to build a micropower low-frequency synthesizer. A logic 0 on the INHIBIT input "enables" the VCO and the source follower, while a logic 1 "turns off" both to minimize stand-by power consumption.


Features:


- Very low power consumption: 70 µW (typ.) at VCO f_o = 10 kHz, V_{DD} = 5 V
- Operating frequency range up to 1.4 MHz (typ.) at V_{DD} = 10 V, RI = 5 k Ω
- Low frequency drift: 0.04%/°C (typ.) at VDD = 10 V
- Choice of two phase comparators:
 Exclusive-OR network (I)
 Edge-controlled memory network with phase-pulse
- output for lock indication (II) # High VCO linearity: <1% (typ.) at V_{DD} = 10 V
- VCO inhibit control for ON-OFF keying and ultra-low standby power consumption
- Source-follower output of VCO control input (Demod. output)
- Zener diode to assist supply regulation
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- FM demodulator and modulator
- Frequency synthesis and multiplication
- Frequency discriminator
- Data synchronization
- Voltage-to-frequency conversion
- Tone decoding
- FSK Modems
- Signal conditioning
- (See ICAN-6101) "RCA COS/MOS Phase-Locked Loop – A Versatile Building Block for Micropower Digital and Analog Applications"

MAXIMUM RATINGS, Absolute-Maximum Values:

Voltages referenced to V_{SS} Terminal) -0.5V to +20V INPUT VOLTAGE RANGE, ALL INPUTS -0.5V to V_{DD} +0.5V DC INPUT CURRENT, ANY ONE INPUT ±10mA POWER DISSIPATION PER PACKAGE (PD): For $T_A = -55^{\circ}C$ to +100°C 500mW For $T_A = +100^{\circ}C$ to +125°C Derate Linearity at 12mW/°C to 200mW DEVICE DISSIPATION PER OUTPUT TRANSISTOR 100mW PORE TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) 100mW OPERATING-TEMPERATURE RANGE (Tab) -65°C to +126°C STORAGE TEMPERATURE RANGE (Tab) -65°C to +150°C LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max +285°C	RANGE, (V _{DD})	DC SUPPLY-VO
DC INPUT CURRENT, ANY ONE INPUT $\pm 10mA$ POWER DISSIPATION PER PACKAGE (PD): $500mW$ For TA = -55°C to +100°C $500mW$ For TA = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW DEVICE DISSIPATION PER OUTPUT TRANSISTOR FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) 100mW OPERATING-TEMPERATURE RANGE (TA) $-55°C$ to +125°C STORAGE TEMPERATURE RANGE (Tag) $-65°C$ to +150°C LEAD TEMPERATURE (DURING SOLDERING): $-65°C$ to +150°C	V _{SS} Terminal)	Voltages refere
DC INPUT CURRENT, ANY ONE INPUT $\pm 10mA$ POWER DISSIPATION PER PACKAGE (PD): $500mW$ For TA = -55°C to +100°C $500mW$ For TA = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW DEVICE DISSIPATION PER OUTPUT TRANSISTOR FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) 100mW OPERATING-TEMPERATURE RANGE (TA) $-55°C$ to +125°C STORAGE TEMPERATURE RANGE (Tag) $-65°C$ to +150°C LEAD TEMPERATURE (DURING SOLDERING): $-65°C$ to +150°C	E, ALL INPUTS	INPUT VOLTAGE
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$		
For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C. Derate Linearity at $12mW/^{\circ}$ C to $200mW$ DEVICE DISSIPATION PER OUTPUT TRANSISTOR FOR $T_A = FULL$ PACKAGE-TEMPERATURE RANGE (All Package Types) 100mW OPERATING-TEMPERATURE RANGE (T_A) -55°C to $+125^{\circ}$ C 50°R de $+125^{\circ}$ C STORAGE TEMPERATURE RANGE (T_{stg}) -65°C to $+150^{\circ}$ C LEAD TEMPERATURE (DURING SOLDERING):	PER PACKAGE (PD):	POWER DISSIPA
$\label{eq:constraint} \begin{array}{l} \mbox{Device Dissipation Per Output Transistor} \\ \mbox{FOR T}_{A} = \mbox{FULL PACKAGE-TEMPERATURE RANGE (All Package Types)} & \mbox{100mW} \\ \mbox{OPERATING-TEMPERATURE RANGE (T}_{A}) & \mbox{-55°C to +125°C} \\ \mbox{STORAGE TEMPERATURE RANGE (T}_{stg}) & \mbox{-65°C to +150°C} \\ \mbox{LEAD TEMPERATURE (DURING SOLDERING):} \end{array}$	00°C	For T _A = -55°C
$\label{eq:starsest} \begin{array}{llllllllllllllllllllllllllllllllllll$	125°C Derate Linearity at 12mW/°C to 200mW	For $T_A = +100^6$
OPERATING-TEMPERATURE RANGE (T _A)	ZER OUTPUT TRANSISTOR	DEVICE DISSIPA
STORAGE TEMPERATURE RANGE (T _{stg})65°C to + 150°C LEAD TEMPERATURE (DURING SOLDERING):	AGE-TEMPERATURE RANGE (All Package Types)	FOR T _A = FULI
LEAD TEMPERATURE (DURING SOLDERING):	TURE RANGE (T _A)	OPERATING-TER
LEAD TEMPERATURE (DURING SOLDERING):	RE RANGE (Tata)	STORAGE TEMP
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max		
	³ 2 inch (1.59 ± 0.79mm) from case for 10s max	At distance 1/1

Phase Comparators

The phase-comparator signal input (terminal 14) can be direct-coupled provided the signal swing is within CMOS logic levels [logic "0" $\leq 30\%$ (VDD-VSS), logic "1" $\geq 70\%$ (VDD-VSS)]. For smaller swings the signal must be capacitively coupled to the self-biasing amplifier at the signal input.

9208-29172

ANE PROTECTED

Phase comparator I is an exclusive-OR network; it operates analagously to an overdriven balanced mixer. To maximize the lock range, the signal- and comparator-input frequencies must have a 50% duty cycle. With no signal or noise on the signal input, this phase comparator has an average output voltage equal to VDD/2. The low-pass filter connected to the output of phase comparator

CD4046B Types

RECOMMENDED OPERATING CONDITIONS at T_A = Full Package-Temperature Range For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

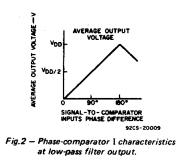
CHARACTERISTIC		UNITS	
	Min.	Max.	
Supply-Voltage Range VCO Section:			1
As Fixed Oscillator	3	18	1
Phased-Lock-Loop Operation	5	18	l v
Supply-Voltage Range Phase Comparator Section:			1
Comparators	3	18	
VCO Operation	5	. 18	1.1

DESIGN INFORMATION

This information is a guide for approximating the values of external components for the CD4046B in a Phase-Locked-Loop system. The selected external components must be within the following ranges: 5 k $\Omega \le R1$, R2, R_S $\le 1 M\Omega$ C1 \ge 100 pF at V_{DD} \ge 5 V; C1 \ge 50 pF at V_{DD} \ge 10 V

Characteristics	Phase Comparator Used	Design Information							
		VCO WITHOUT OFFSET R2 = ∞	VCO WITH OFFSET						
VCO Frequency	1	1 MAX 10 1 27L 1 2	10 121L 10 10 10 121L 10 10 10 10 10 10 10 10 10 10 10 10 10						
	2	Same as for No.1							
For No Signal Input	1	VCO will adjust to center fre	equency, f _o						
	2	VCO will adjust to lowest operating frequency, fmin							
Frequency Lock	1	$2 f_L = full VCO frequency r 2 f_L = f_{max} - f_{min}$							
Range, 2 fL	2	Same as for No.1							
Frequency Capture Range, 2 f _C	1	11 R3 OUT 71-R3C2 C2	(1), (2) 2 f _C $\approx \frac{1}{\pi} \sqrt{\frac{2\pi f_{\rm L}}{\tau 1}}$						
Loop Filter Component Selection			For 2 f _C , see Ref. (2)						
	2	f _C = fL							
Phase Angle Between Signal and Comparator	1	90° at center frequency (f ₀) and 180° at ends of lock ran	approximating 0 ⁰ ge (2 fi)						
	2	Always 0° in lock	<u> </u>						
Locks On Harmonic of	. 1	Yes	·						
Center Frequency	2	No							
Signal Input	1	Hig	h						
Noise Rejection	2	Lov	N						

For further information, see


(1) F. Gardner, "Phase-Lock Techniques" John Wiley and Sons, New York, 1966 (2) G. S. Moschytz, "Miniaturized RC Filters Using Phase-Locked Loop", BSTJ, May, 1965. I supplies the averaged voltage to the VCO input, and causes the VCO to oscillate at the center frequency (fo).

The frequency range of input signals on which the PLL will lock if it was initially out of lock is defined as the frequency capture range (2f_c).

The frequency range of input signals on which the loop will stay locked if it was initially in lock is defined as the frequency lock range (2fL). The capture range is \leq the lock range.

With phase comparator I the range of frequencies over which the PLL can acquire lock (capture range) is dependent on the low-pass-filter characteristics, and can be made as large as the lock range. Phase-comparator I enables a PLL system to remain in lock in spite of high amounts of noise in the input signal.

One characteristic of this type of phase comparator is that it may lock onto input frequencies that are close to harmonics of the VCO center-frequency. A second characteristic is that the phase angle between the signal and the comparator input varies between 0° and 180°, and is 90° at the center frequency. Fig. 2 shows the typical, triangular, phase-to-output response characteristic of phase-comparator I. Typical waveforms for a CMOS phase-locked-loop employing phase comparator I in locked condition of f_0 is shown in Fig. 3.

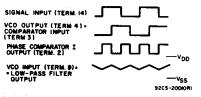


Fig. 3—Typical waveforms for CMOS phase-locked loop employing phase comparator in locked condition of fo.

Phase-comparator II is an edge-controlled digital memory network. It consists of four flip-flop stages, control gating, and a threestate output circuit comprising p- and n-type drivers having a common output node. When the p-MOS or n-MOS drivers are ON they pull the output up to VDD or down to VSS, respectively. This type of phase comparator acts only on the positive edges of the signal and comparator inputs. The duty cycles of the signal and comparator inputs are not important since positive transitions

3-125

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	CONI	отю	NS	LIMI	TS AT II	NDICATI	ED TEN	IPERA	TURES (°C)	U N I T
	vo	VIN	VDD						+25		S
·	(v)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Mex.	
VCO Section											
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6		
OL Min.	1.5	0,15	15	4.2	. 4	2.8	2.4	3.4	6.8	-	
Output High	4.6	0,5	- 5 -	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mA
(Source)	2.5	0,5	5	2	-1.8	-1.3	-1.15	-1.6	-3.2	_	
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-	
OH Min.	13.5	0.15	ົ15ົ	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:	Term. 4	0,5	5		0.	.05		+	0	0.05	
Low-Level,	driving	0,10	10		0.	.05	_	-	0	0.05	
VOL Max.	CMOS	0,15	15		0.	.05		+	0	0.05	V.
Output		0,5	5		4.	.95		4.95	5		Ι.
Voltage: High-Level, VOH ^{Min,}	e.g.	0,10	10		9.	95		9.95	10	_	
	Term.3	0,15	15		14.	.95		14.95	15	-	
Input Current I _{IN} Max.	-	0,18	18	±0.1	±0.1	±1	±1		±10 ^{—5}	±0.1	μA
Phase Comparator S	ection				1						
Total Device	-	0,5	5			0.2		-	0.1	0.2	(···
Current, IDD Max.	_	0,10	10	- - -		1		-	0.5	1	lmA
Term. 14 open,		0,15	15			1.5			0.75	1.5	
Term. 5 = V _{DD}	-	0,20	20			4 =-	1	—	2	4	
	_	0,5	5			20		-	10	20	
Term. 14 = V _{SS}	_	0,10	10			40		-	20	40	μA
or V _{DD} , Term. 5	_ 1	0,15	15			80	-	_	40	80	,
= V _{DD}	-	0,20	20			160		_	80	160	
<u> </u>	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	_	
Output Low (Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6		1
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	- 1	1
Output High	4.6	0,5	5	-0.64	0.61	-0.42	-0.36	-0.51	-1	<u> </u>	mA
(Source)	2.5	0,5	5	-2	-1.8	-1.3		-1.6		- 1	1
Current	9.5	0.10	10	-1.6	-1.5	-1.1		-1.3		-	
OH Min.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4		- 1	1
DC-Coupled Signal Input and Comparator Input Voltage Sensitivity Low Level	0545		5 10			1.5 3		-	-	1.5 3	
	1.5,13.5	-	15			4		- 1	-	4	lv
	0.5,4.5	-	5			3.5	<u> </u>	3.5	-	- 1	1
High Level	1,9	-	10	•		3.5		3.5		-	
V _{IH} Min.	1.5,13.5		15			11	<u> </u>	11	-	<u> </u>	1

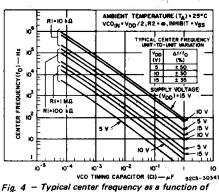
control the PLL system utilizing this type of comparator. If the signal-input frequency is higher than the comparator-input frequency, the p-type output griver is maintained ON most of the time, and both the n and p drivers OFF (3 state) the remainder

сå,

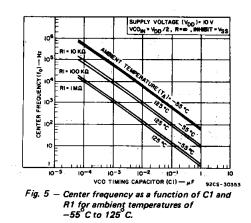
of the time. If the signal-input frequency is lower than the comparator-input frequency, the n-type output driver is maintained ON most of the time, and both the n and p drivers OFF (3 state) the remainder of the time. If the signal- and comparatorinput frequencies are the same, but the signal input lags the comparator input in phase, the n-type output driver is maintained ON for a time corresponding to the phase difference. If the signal- and comparator-input frequencies are the same, but

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	CO	NDITIO	NS	LIMITS AT INDICATED TEMPERATURES (°C)							
	V _O V _{IN} V _{DD} (V) (V) -55 -40 +85 +125		+25								
					-40	+85	+125	Min.	Typ.	Max.	1
Phase Comparator	Section	(cont'd)								
Input Current I _{IN} Max. (except Term 14)	I	0,18	18	±0.1	±0,1	±1	±1		±10-5	±0.1	μА
3-State Leakage Current, ^I OUT Max.	0,18	0,18	18	±0.1	±0.1	±0.2	±0.2		±10 ⁻⁵	±0.1	μА

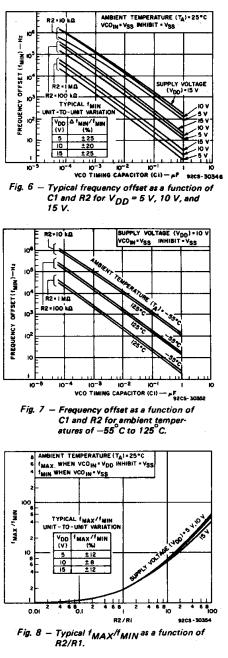

*Limit determined by minimum feasible leakage current measurement for automatic testing.

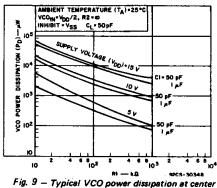
ELECTRICAL CHARACTERISTICS at TA = 25°C


CHARAG- TERISTIC	TEST	CONDITI	ONS	V _{DD}		LIMITS		UNITS
				(V)	Min.	Typ.	Max.	
VCO Section				,				
Operating Power Dissipation, P _D	f _o = 10 kHz R ₂ = ∞	R ₁ = ' VCO _{IN} =	1 MΩ V _{DD} 2	5 10 15		70 800 3000	140 1600 6000	
Maximum Operating Frequency f _{max}	C ₁ =50 pF R ₂ = ∞ VCO _{1N} =V _{DD}	R ₁ = 1	I0 kΩ	5 10 15	0.3 0.6 0.8	0.6 1.2 1.6		MHz
•	C ₁ = 50 pF R ₂ = ∞ VCO _{IN} =V _{DD}	R ₁ = 5	ōkΩ	5 10 15	0.5 1 1.4	0.8 1.4 2.4		WITZ
Center Frequency (f ₀) and Frequency Range (f _{max} —f _{min})	Programmal	ble with e		mponent See Desigi			1.	
	VCO _{IN = 2.5 V}	±0.3V, F	5	-	1.7	_		
	=5 V ±	10	_	0.5	_	-		
Linearity		2.5 V,			4		%	
			= 100 kΩ	15 15		0.5	. —	
	= 7.5 V	$= 7.5 V \pm 5 V, = 1 M\Omega$				7	—	L
Temperature – Frequency Stability: No Frequency Offset f _{MIN} = 0				5 10 15		±0.12 ±0.04 ±0.015	. .	%/°C
Frequency Offset ^f MIN ≠ 0		•		5 10 15	-	±0.09 ±0.07 ±0.03		/o/ U
Output Duty Cycle				5,10,15	-	50		%
Output Transition Times, ^t THL ^{, t} TLH				5 10 15		100 50 40	200 100 80	ns

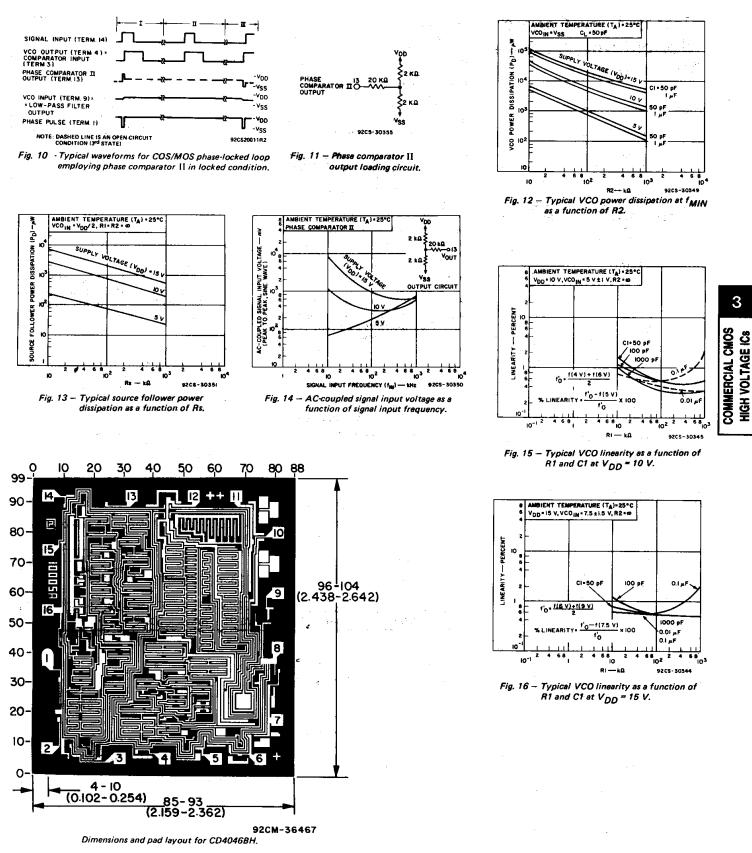
the comparator input lags the signal in phase, the p-type output driver is maintained ON for a time corresponding to the phase difference. Subsequently, the capacitor voltage of the low-pass filter connected to this phase comparator is adjusted until the signal and comparator inputs are equal in both phase and frequency. At this stable point both pand n-type output drivers remain OFF and thus the phase comparator output becomes an open circuit and holds the voltage on the capacitor of the low-pass filter constant. Moreover the signal at the "phase pulses" output is a high level which can be used for indicating a locked condition. Thus, for phase comparator II, no phase difference exists between signal and comparator input over the full VCO frequency range. Moreover, the power dissipation due to the lowpass filter is reduced when this type of phase comparator is used because both the p- and n-type output drivers are OFF for most of the signal input cycle. It should be noted that the PLL lock range for this type of phase comparator is equal to the capture range, independent of the low-pass filter. With no signal present at the signal input, the VCO is adjusted to its lowest frequency for phase comparator II. Fig. 10 shows typical waveforms for a CMOS PLL employing phase comparator II in a locked condition.

3


C1 and R1 at V_{DD} = 5 V, 10 V, and 15 V.



ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}C$


	TEO					LINUTE	
TERISTIC	TES	TCONDITIONS		A Min.	LL TYP Typ.	ES Max.	UNITS
VCO Section (cont	'd)		<u> </u>		• 7 🗗		
Source-Follower Output (Demodu- lated Output) : Offset Voltage VCO _{IN} VDEM	RS	> 10 kΩ	5 10 15	-	1.8 1.8 1.8	2.5 2.5 2.5	: V
Linearity	R _S =100 kΩ = 300 kΩ =500 kΩ	VCO _{IN} = 2.5±0.3 V = 5±2.5 V = 7.5± 5 V	5 10 15		0.3 0.7 0.9		%
Zener Diode Voltage (V _z)	١ _Z	≠ 50 μA		4.45	5.5	6.15	v
Zener Dynamic Resistance, R _z	۱ ₂	z = 1 mA		_	40	-	Ω
Phase Comparator S	ection						
Term. 14 (SIGNAL IN) Input Resistance R ₁₄			5 10 15	1 0.2 0.1	2 0.4 0.2	- - -	MΩ
AC Coupled Signal Input Voltage Sensi- tivity* (peak- to-peak)		= 100 kHz, wave	5 10 15		180 330 900	360 660 1800	mV
Propagation Delay Times, Terms. 14 to t: High to Low Level, tPHL					225 100 65	450 200 130	ns
Low to High Level, tPLH			5 10 15		350 150 100	700 300 200	ns
3-State Propagation Delay Times, Terms. 3 to 13: High Level to High Impedance, ^t PHZ			5 10 15	-	225 100 95	450 200 190	ns
Terms. 14 to 13: Low Level to High Impedance, ^t PLZ			5 10 15	 	285 130 95	570 260 190	ns
Input Rise or Fall Times, t _r , t _f Comparator Input, Term. 3	See Fig. 5 fo output load	or Phase Comp. II ing	5 10 15		- -	50 1 0.3	μs
Signal Input, Term. 14			5 10 15	- - -	- - -	500 20 2.5	μs
Output Transition Times, t _{THL} , t _{TLH}			5 10 15		100 50 40	200 100 80	กร

ig. 9 — Typical VCO power dissipation at center frequency as a function of R1.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9466401MEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9466401ME A CD4046BF3A	Samples
CD4046BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4046BE	Samples
CD4046BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4046BE	Samples
CD4046BF	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD4046BF	Samples
CD4046BF3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9466401ME A CD4046BF3A	Samples
CD4046BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4046B	Samples
CD4046BNSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4046B	Samples
CD4046BNSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4046B	Samples
CD4046BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM046B	Samples
CD4046BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM046B	Samples
CD4046BPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM046B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

www.ti.com

PACKAGE OPTION ADDENDUM

10-Jun-2014

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

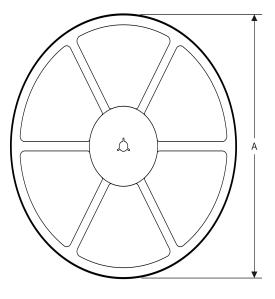
OTHER QUALIFIED VERSIONS OF CD4046B, CD4046B-MIL :

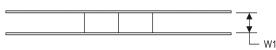
• Catalog: CD4046B

• Military: CD4046B-MIL

NOTE: Qualified Version Definitions:

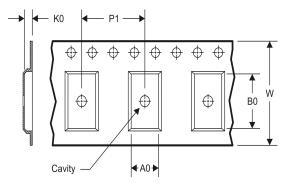
- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

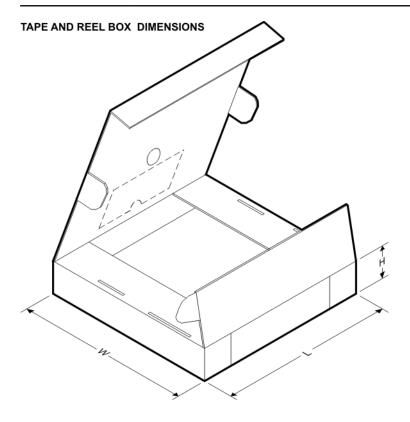
REEL DIMENSIONS


Texas Instruments

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

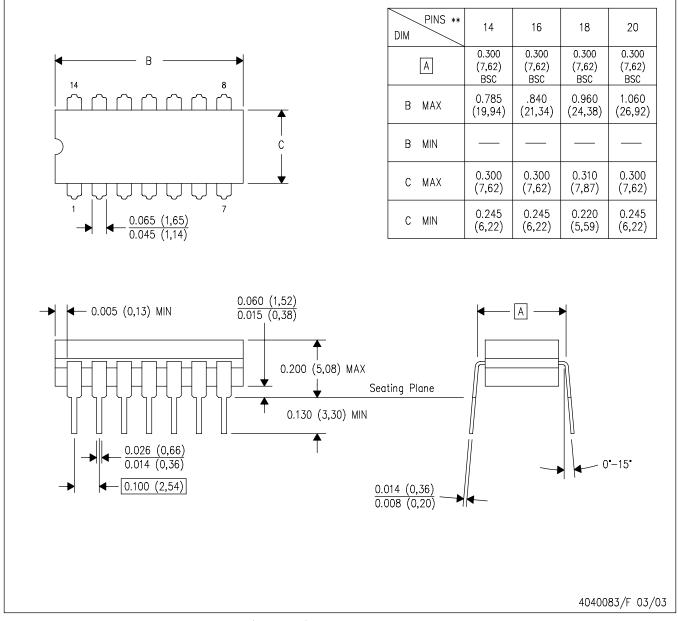

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD4046BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD4046BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

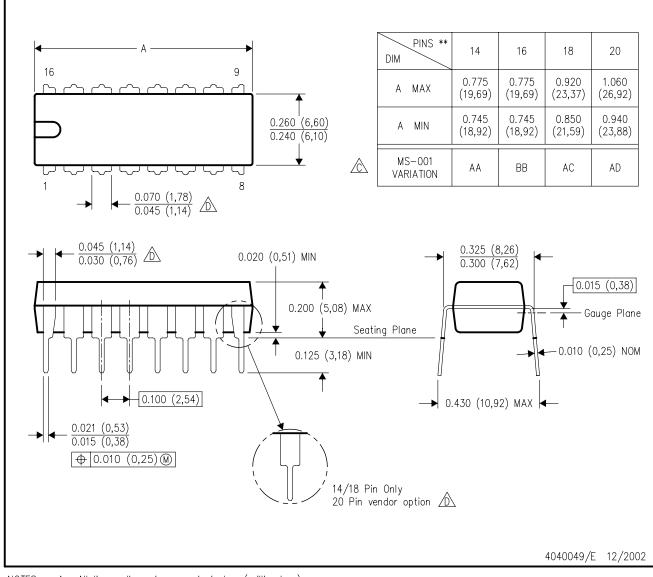


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4046BNSR	SO	NS	16	2000	367.0	367.0	38.0
CD4046BPWR	TSSOP	PW	16	2000	367.0	367.0	35.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

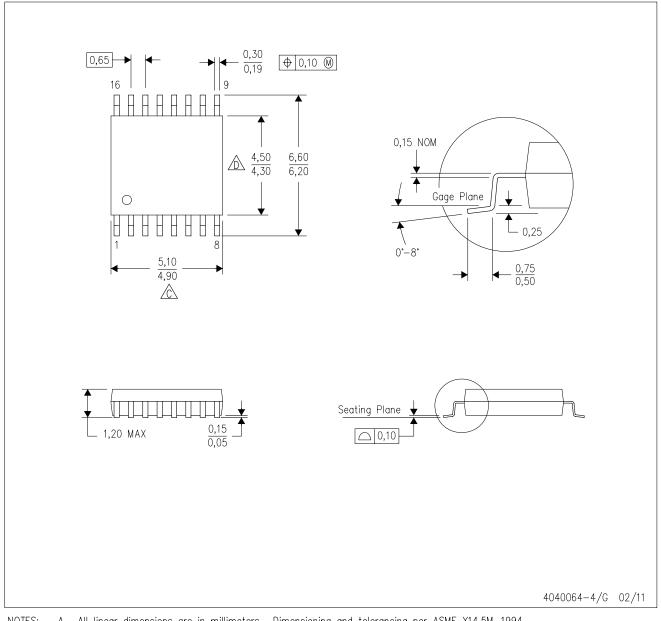

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

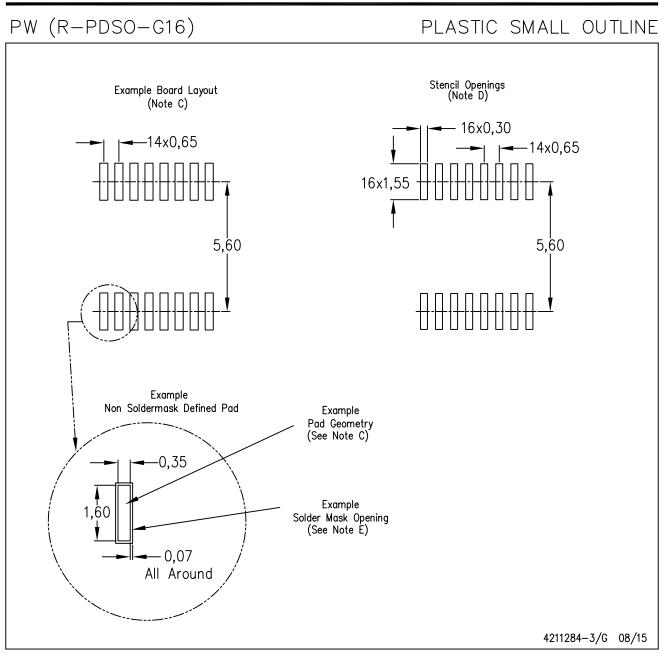

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:


A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated