HESTORE.HU

EN: This Datasheet is presented by the manufacturer.
Please visit our website for pricing and availability at www.hestore.hu.

MJE13003

SWITCHMODE ${ }^{\text {m }}$ Series NPN Silicon Power Transistor

These devices are designed for high-voltage, high-speed power switching inductive circuits where fall time is critical. They are particularly suited for 115 and 220 V SWITCHMODE applications such as Switching Regulators, Inverters, Motor Controls, Solenoid/Relay drivers and Deflection circuits.

Features

- Reverse Biased SOA with Inductive Loads @ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$
- Inductive Switching Matrix 0.5 to $1.5 \mathrm{~A}, 25$ and $100^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{c}} @ 1 \mathrm{~A}, 100^{\circ} \mathrm{C}$ is 290 ns (Typ)
- 700 V Blocking Capability
- SOA and Switching Applications Information
- $\mathrm{Pb}-$ Free Package is Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {cEO(sus) }}$	400	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEV }}$	700	Vdc
Emitter Base Voltage	$\mathrm{V}_{\text {EBO }}$	9	Vdc
Collector Current - Continuous - Peak (Note 1)	$\begin{gathered} \mathrm{IC}_{\mathrm{C}} \\ \mathrm{I}_{\mathrm{CM}} \end{gathered}$	$\begin{gathered} 1.5 \\ 3 \end{gathered}$	Adc
Base Current - Continuous - Peak (Note 1)	$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{I}_{\mathrm{BM}} \\ \hline \end{gathered}$	$\begin{gathered} 0.75 \\ 1.5 \end{gathered}$	Adc
Emitter Current - Continuous - Peak (Note 1)	$\begin{aligned} & \hline I_{E} \\ & I_{E M} \end{aligned}$	$\begin{gathered} 2.25 \\ 4.5 \end{gathered}$	Adc
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 1.4 \\ 11.2 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Total Power Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 40 \\ 320 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	$\begin{gathered} -65 \text { to } \\ +150 \end{gathered}$	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	3.12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	89	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Load Temperature for Soldering Purposes: $1 / 8^{\prime \prime}$ from Case for 5 Seconds	T_{L}	275	${ }^{\circ} \mathrm{C}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.
[^0]ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

$$
\begin{aligned}
& \text { 1.5 AMPERES } \\
& \text { NPN SILICON POWER } \\
& \text { TRANSISTORS } \\
& \text { 300 AND 400 VOLTS } \\
& 40 \text { WATTS }
\end{aligned}
$$

MARKING DIAGRAM

Y	$=$ Year
WW	$=$ Work Week
JE13003	Device Code
G	$=$ Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
MJE13003	TO-225	500 Units/Box
MJE13003G	TO-225 (Pb-Free)	500 Units/Box

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (Note 2)					
Collector-Emitter Sustaining Voltage ($\mathrm{IC}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{\text {CEO(sus) }}$	400	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CEV}}=$ Rated Value, V_{BE} (off) $=1.5 \mathrm{Vdc}$) $\left(\mathrm{V}_{\mathrm{CEV}}=\right.$ Rated Value, $\left.\mathrm{V}_{\mathrm{BE}(\text { (off })}=1.5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right)$	$I_{\text {CEV }}$	-		$\begin{aligned} & 1 \\ & 5 \end{aligned}$	mAdc
Emitter Cutoff Current ($\left.\mathrm{V}_{\mathrm{EB}}=9 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{I}_{\text {ebo }}$	-	-	1	mAdc

SECOND BREAKDOWN

Second Breakdown Collector Current with bass forward biased	$\mathrm{I}_{\mathrm{S} / \mathrm{b}}$	See Figure 11	-
Clamped Inductive SOA with base reverse biased	RBSOA	See Figure 12	-

ON CHARACTERISTICS (Note 2)

DC Current Gain $\left(I_{C}=0.5 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=2 \mathrm{Vdc}\right)$ ($\mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=2 \mathrm{Vdc}$)	$h_{\text {FE }}$	8	-	40 25	-
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \quad\left(\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=1.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$	- - -	- - -	0.5 1 3 1	Vdc
$\begin{aligned} & \text { Base-Emitter Saturation Voltage } \\ & \quad\left(I_{C}=0.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{B E \text { (sat) }}$	-	-	1 1.2 1.1	Vdc

DYNAMIC CHARACTERISTICS

Current-Gain - Bandwidth Product $\left(\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1 \mathrm{MHz}\right)$	f_{T}	4	10	-	MHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=0.1 \mathrm{MHz}\right)$	C_{ob}	-	21	-	pF

SWITCHING CHARACTERISTICS

Resistive Load (Table 1)						
Delay Time	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=125 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A},\right. \\ & \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=0.2 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=25 \mu \mathrm{~s}, \\ & \text { Duty Cycle } \leq 1 \%) \end{aligned}$	t_{d}	-	0.05	0.1	$\mu \mathrm{s}$
Rise Time		tr_{r}	-	0.5	1	$\mu \mathrm{s}$
Storage Time		t_{s}	-	2	4	μs
Fall Time		tf_{f}	-	0.4	0.7	$\mu \mathrm{s}$
Inductive Load, Clamped (Table 1, Figure 13)						
Storage Time	$\begin{aligned} & \left(I_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{\text {clamp }}=300 \mathrm{Vdc},\right. \\ & \left.\mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{~A}, \mathrm{~V}_{\mathrm{BE}(\text { off })}=5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	t_{sv}	-	1.7	4	$\mu \mathrm{s}$
Crossover Time		t_{c}	-	0.29	0.75	$\mu \mathrm{s}$
Fall Time		t_{fi}	-	0.15	-	$\mu \mathrm{s}$

2. Pulse Test: PW = $300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.

Figure 1. DC Current Gain

Figure 3. Base-Emitter Voltage

Figure 5. Collector Cutoff Region

Figure 2. Collector Saturation Region

Figure 4. Collector-Emitter Saturation Region

Figure 6. Capacitance

MJE13003

Table 1．Test Conditions for Dynamic Performance

REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING		RESISTIVE SWITCHING
SInગบાロ 1Sヨ1		
比䳐	Coil Data： GAP for $30 \mathrm{mH} / 2 \mathrm{~A}$ $\mathrm{~V}_{\text {CC }}=20 \mathrm{~V}$ Ferroxcube Core \＃6656 $\mathrm{L}_{\text {coil }}=50 \mathrm{mH}$ $\mathrm{V}_{\text {clamp }}=300 \mathrm{Vdc}$ Full Bobbin（ ~ 200 Turns）\＃20	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=125 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{C}}=125 \Omega \\ & \mathrm{D} 1=1 \mathrm{~N} 5820 \text { or Equiv. } \\ & \mathrm{R}_{\mathrm{B}}=47 \Omega \\ & \hline \end{aligned}$
SWษOョヨニシM ISヨI	OUTPUT WAVEFORMS t_{1} Adjusted to Obtain IC $\mathrm{t}_{1} \approx \frac{\mathrm{~L}_{\text {coil }}\left(\mathrm{I}_{\mathrm{pk}}\right)}{\mathrm{V}_{\mathrm{CC}}}$ Test Equipment Scope－Tektronics 475 or Equivalent $\mathrm{t}_{2} \approx \frac{\mathrm{~L}_{\text {coil }}\left(\mathrm{I}_{\mathrm{ck}}\right)}{\mathrm{V}_{\text {clamp }}}$	$t_{r}, t_{f}<10 \mathrm{~ns}$ Duty Cycle $=1.0 \%$ R_{B} and R_{C} adjusted for desired I_{B} and I_{C}

MJE13003

TIME

Table 2. Typical Inductive Switching Performance

$\mathbf{I}_{\mathbf{C}}$ $\mathbf{A M P}$	$\mathbf{T}_{\mathbf{C}}$ ${ }^{\circ} \mathbf{C}$	$\mathbf{t}_{\mathbf{s v}}$ $\mu \mathbf{s}$	$\mathbf{t}_{\mathbf{r v}}$ $\mu \mathbf{s}$	$\mathbf{t}_{\mathbf{f i}}$ $\mu \mathbf{s}$	$\mathbf{t}_{\mathbf{t i}}$ $\mu \mathbf{s}$	$\mathbf{t}_{\mathbf{c}}$ $\mu \mathbf{s}$
0.5	25	1.3	0.23	0.30	0.35	0.30
	100	1.6	0.26	0.30	0.40	0.36
1	25	1.5	0.10	0.14	0.05	0.16
	100	1.7	0.13	0.26	0.06	0.29
1.5	25	1.8	0.07	0.10	0.05	0.16
	100	3	0.08	0.22	0.08	0.28

Figure 7. Inductive Switching Measurements
NOTE: All Data Recorded in the Inductive Switching Circuit in Table 1

SWITCHING TIMES NOTE

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined.
$\mathrm{t}_{\mathrm{sv}}=$ Voltage Storage Time, $90 \% \mathrm{I}_{\mathrm{B} 1}$ to $10 \% \mathrm{~V}_{\text {clamp }}$
$\mathrm{t}_{\mathrm{rv}}=$ Voltage Rise Time, $10-90 \% \mathrm{~V}_{\text {clamp }}$
$\mathrm{t}_{\mathrm{fi}}=$ Current Fall Time, $90-10 \% \mathrm{I}_{\mathrm{C}}$
$\mathrm{t}_{\mathrm{ti}}=$ Current Tail, $10-2 \% \mathrm{I}_{\mathrm{C}}$
$\mathrm{t}_{\mathrm{c}}=$ Crossover Time, $10 \% \mathrm{~V}_{\text {clamp }}$ to $10 \% \mathrm{I}_{\mathrm{C}}$

An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms.

For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222:
$\mathrm{P}_{\mathrm{SWT}}=1 / 2 \mathrm{~V}_{\mathrm{CC}} \mathrm{I}_{\mathrm{C}}\left(\mathrm{t}_{\mathrm{c}}\right) \mathrm{f}$
In general, $\mathrm{t}_{\mathrm{rv}}+\mathrm{t}_{\mathrm{fi}} \simeq \mathrm{t}_{\mathrm{c}}$. However, at lower test currents this relationship may not be valid.

As is common with most switching transistors, resistive switching is specified at $25^{\circ} \mathrm{C}$ and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (t_{c} and t_{sv}) which are guaranteed at $100^{\circ} \mathrm{C}$.

MJE13003

RESISTIVE SWITCHING PERFORMANCE

Figure 8. Turn-On Time

Figure 9. Turn-Off Time

Figure 10. Thermal Response

The Safe Operating Area figures shown in Figures 11 and 12 are specified ratings for these devices under the test conditions shown.

Figure 11. Active Region Safe Operating Area

SAFE OPERATING AREA INFORMATION

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 11 is based on $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $\mathrm{T}_{\mathrm{C}} \geq 25^{\circ} \mathrm{C}$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 11 may be found at any case temperature by using the appropriate curve on Figure 13.
$\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current conditions during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 12 gives RBSOA characteristics.

Figure 12. Reverse Bias Safe Operating Area

Figure 13. Forward Bias Power Derating

MJE13003

PACKAGE DIMENSIONS

TO-225
CASE 77-09
ISSUE Z

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 077-01 THRU -08 OBSOLETE, NEW STANDARD 077-09.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.425	0.435	10.80	11.04
B	0.295	0.305	7.50	7.74
C	0.095	0.105	2.42	2.66
D	0.020	0.026	0.51	0.66
F	0.115	0.130	2.93	3.30
G	0.094 BSC		2.39 BSC	
H	0.050	0.095	1.27	2.41
J	0.015	0.025	0.39	0.63
K	0.575	0.655	14.61	16.63
M	5° TYP		5° TYP	
Q	0.148	0.158	3.76	4.01
R	0.045	0.065	1.15	1.65
S	0.025	0.035	0.64	0.88
U	0.145	0.155	3.69	3.93
V	0.040	---	1.02	---

STYLE 3:
PIN 1. BASE
2. COLLECTOR
3. EMITTER

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and (OII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidianies, a and distributors harmess against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of pert
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

[^0]: *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

