

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at <u>www.hestore.hu</u>.

October 1995 Revised May 2003

NC7S00 TinyLogic® HS 2-Input NAND Gate

FAIRCHILD

SEMICONDUCTOR

NC7S00 TinyLogic® HS 2-Input NAND Gate

General Description

The NC7S00 is a single 2-Input high performance CMOS NAND Gate. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation over a broad V_{CC} range. ESD protection diodes inherently guard both inputs and output with respect to the $V_{\mbox{\scriptsize CC}}$ and $\mbox{\scriptsize GND}$ rails. Three stages of gain between inputs and output assures high noise immunity and reduced sensitivity to input edge rate.

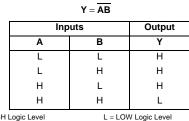
Features

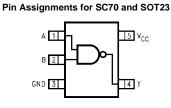
- Space saving SOT23 or SC70 5-lead package
- Ultra small MicroPak[™] leadless package
- High speed: t_{PD} 3.5 ns typ
- Low Quiescent Power: I_{CC} < 1 μA
- Balanced Output Drive: 2 mA I_{OL}, -2 mA I_{OH}
- Broad V_{CC} Operating Range: 2V–6V
- Balanced Propagation Delays
- Specified for 3V operation

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7S00M5X	MA05B	7S00	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7S00P5X	MAA05A	S00	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel
NC7S00L6X	MAC06A	A3	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

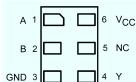
Logic Symbol


Connection Diagrams


IEEE/IEC & R

Pin Descriptions

Pin Names	Description		
A, B	Input		
Y	Output		
NC	No Connect		


Function Table

(Top View)

Pad Assignments for MicroPak

(Top Thru View)

H = HIGH Logic Level

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation.

MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

© 2003 Fairchild Semiconductor Corporation DS012138

Absolute Maximum Ratings(Note 1)

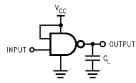
Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
@V _{IN} ≤ -0.5V	–20 mA
$@V_{IN} \ge V_{CC} + 0.5V$	+20 mA
DC Input Voltage (V _{IN})	–0.5V to V_{CC} + 0.5V
DC Output Diode Current (I _{OK})	
@V _{OUT} < -0.5V	–20 mA
$@V_{OUT} > V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _{OUT})	–0.5V to $V_{CC}\text{+}~0.5\text{V}$
DC Output Source	
or Sink Current (I _{OUT})	±12.5 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±25 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	150°C
Lead Temperature (T _L);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SOT23-5	200 mW
SC70-5	150 mW

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V-6.0V
Input Voltage (V _{IN})	0V-V _{CC}
Output Voltage (V _{OUT})	0V-V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t _r , t _f)	
V _{CC} @ 2.0V	0–1000 ns
V _{CC} @ 3.0V	0–750 ns
V _{CC} @ 4.5V	0–500 ns
V _{CC} @ 6.0V	0–400 ns
Thermal Resistance (θ_{JA})	
SOT23-5	300°C/W
SC70-5	425°C/W

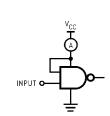
Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside the databook specifications. Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

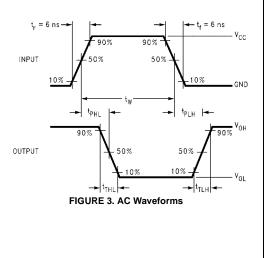

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions		
		(V)	Min	Тур	Max	Min	Max	Units	Conditions
V _{IH}	HIGH Level Input Voltage	2.0	1.50			1.50		V	
		3.0 - 6.0	0.7 V _{CC}			$0.7V_{CC}$		v	
V _{IL}	LOW Level Input Voltage	2.0			0.50		0.50	V	
		3.0 - 6.0			$0.3V_{CC}$		0.3 V _{CC}	v	
V _{ОН}	HIGH Level Output Voltage	2.0	1.90	2.0		1.90			
		3.0	2.90	3.0		2.90		V	$I_{OH} = -20 \ \mu A$ $V_{IN} = V_{IL}$
		4.5	4.40	4.5		4.40		v	$V_{IN} = V_{IL}$
		6.0	5.90	6.0		5.90			
									V _{IN} =V _{IL}
		3.0	2.68	2.85		2.63		V	$I_{OH} = -1.3 \text{ mA}$
		4.5	4.18	4.35		4.13		v	$I_{OH} = -2 \text{ mA}$
		6.0	5.68	5.85		5.63			$I_{OH} = -2.6 \text{ mA}$
V _{OL}	LOW Level Output Voltage	2.0		0.0	0.10		0.10		
		3.0		0.0	0.10		0.10	V	$I_{OL} = 20 \ \mu A$ $V_{IN} = V_{IH}$
		4.5		0.0	0.10		0.10	v	$V_{IN} = V_{IH}$
		6.0		0.0	0.10		0.10		
									$V_{IN} = V_{IH}$
		3.0		0.1	0.26		0.33	V	$I_{OL} = 1.3 \text{ mA}$
		4.5		0.1	0.26		0.33	v	$I_{OL} = 2 \text{ mA}$
		6.0		0.1	0.26		0.33		$I_{OL} = 2.6 \text{ mA}$
I _{IN}	Input Leakage Current	6.0			±0.1		±1.0	μA	$V_{IN} = V_{CC}, \text{ GND}$
I _{CC}	Quiescent Supply Current	6.0			1.0		10.0	μA	$V_{IN} = V_{CC}, GND$

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure	
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH} ,	Propagation Delay	5.0		3.5	15			ns	$C_L = 15 \text{ pF}$	
t _{PHL}		2.0		19	100		125			1
		3.0		10.5	27		35		0 50 - 5	Figures 1, 3
		4.5		7.5	20		25	ns C _L	$C_L = 50 \text{ pF}$	1,0
		6.0		6.5	17		21			
t _{TLH} ,	Output Transition Time	5.0		3.0	10			ns	$C_L = 15 \text{ pF}$	
t _{THL}		2.0		25	125		155			1
		3.0		16	35		45		C 50 mF	Figures 1, 3
		4.5		11	25		31	ns	$C_L = 50 \text{ pF}$	1, 5
		6.0		9	21		26			
CIN	Input Capacitance	Open		2	10		10	pF		
C _{PD}	Power Dissipation Capacitance	5.0		6		1		pF	(Note 3)	Figure 2

NC7S00


Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC} static).$

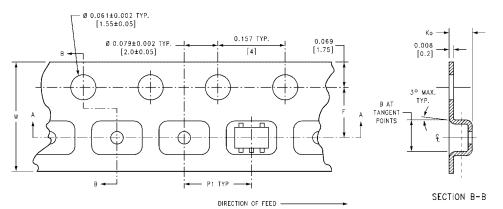
AC Loading and Waveforms

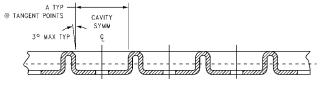


 C_L includes load and stray capacitance Input PRR = 1.0 MHz, t_w = 500 ns

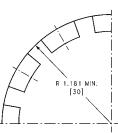
FIGURE 1. AC Test Circuit

Input = AC Waveform; PRR = variable; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit

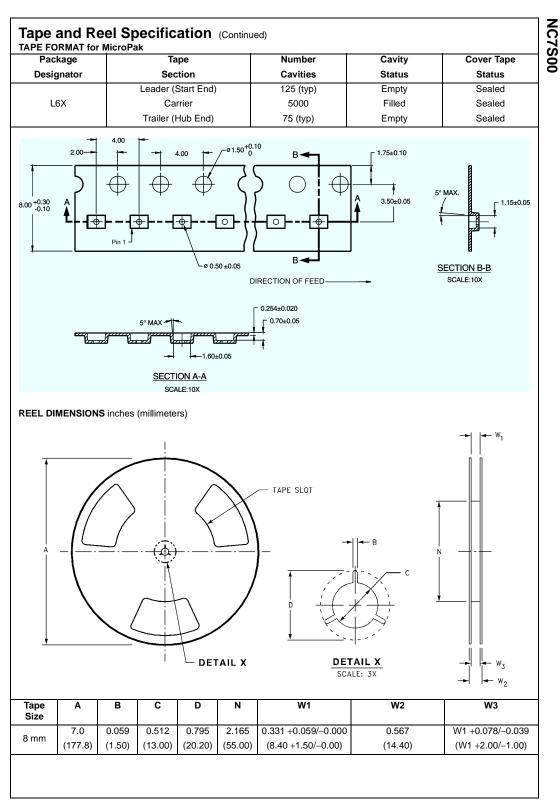


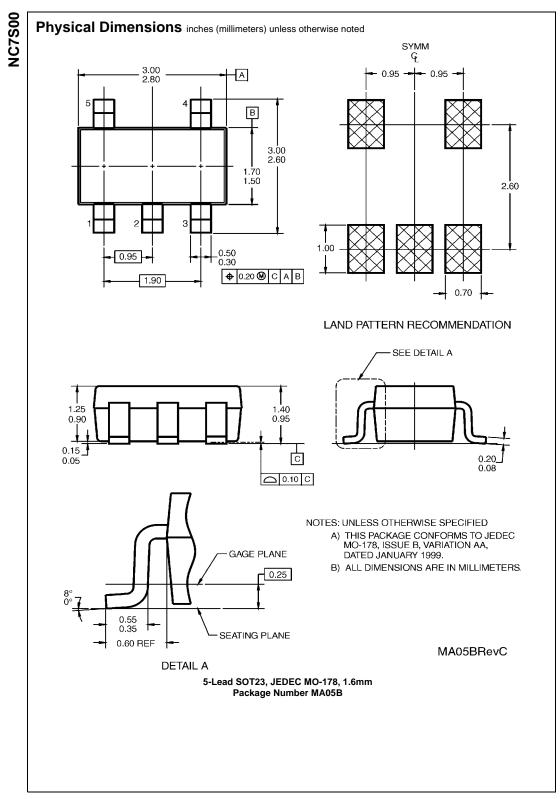

Tape and Reel Specification

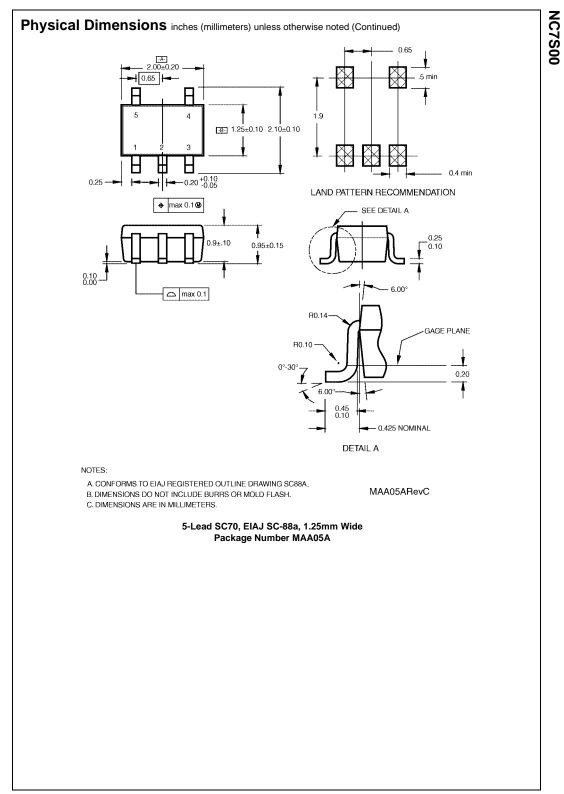
TAPE FORMAT for SC70 and SOT23

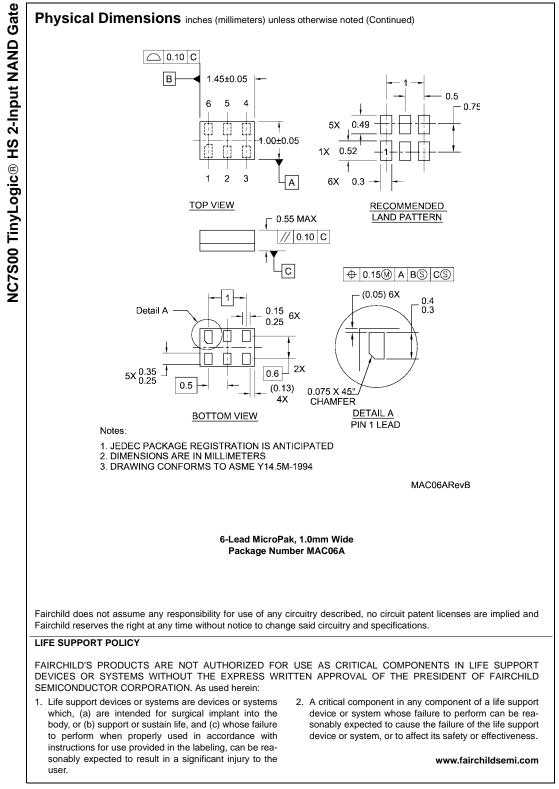

TAPE FORMAT for 5	APE FORMAL for SC/0 and SO123								
Package	Таре	Number	Cavity	Cover Tape					
Designator	Section	Cavities	Status	Status					
	Leader (Start End)	125 (typ)	Empty	Sealed					
M5X, P5X	Carrier	3000	Filled	Sealed					
	Trailer (Hub End)	75 (typ)	Empty	Sealed					

TAPE DIMENSIONS inches (millimeters)




SECTION A-A




BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ±0.004	0.053 ±0.004	0.157	0.315 ± 0.004
		(2.35)	(2.45)	(3.5 ±0.10)	(1.35 ±0.10)	(4)	(8 ±0.1)
SOT23-5	8 mm	0.130	0.130	0.138 ±0.002	0.055 ±0.004	0.157	0.315 ±0.012
	0 11111	(3.3)	(3.3)	(3.5 ±0.05)	(1.4 ±0.11)	(4)	(8 ±0.3)

