HESTORE.HU

EN: This Datasheet is presented by the manufacturer.
Please visit our website for pricing and availability at www.hestore.hu.

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4512B MSI
 8-input multiplexer with 3-state output

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4512B is an 8-input multiplexer with 8 binary inputs (I_{0} to I_{7}), an enable input ($\overline{\mathrm{E}}$) and an output enable input ($\overline{\mathrm{EO}}$). One of eight binary inputs is selected by select inputs $\mathrm{S}_{0}, \mathrm{~S}_{1}$ and S_{2}, and is routed to the output O. A HIGH on $\overline{\mathrm{EO}}$ causes O to assume a high impedance OFF-state, regardless of other input conditions. This allows the output

Fig. 1 Functional diagram.

PINNING

$\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$	select inputs
$\overline{\mathrm{EO}}$	output enable (active LOW)
$\overline{\mathrm{E}}$	enable (active LOW)
I_{0} to I_{7}	multiplexer inputs
O	multiplexer output

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications
to interface directly with bus oriented systems (3-state). When the active LOW enable ($\overline{\mathrm{E}})$ is HIGH, it forces the output LOW provided $\overline{\mathrm{EO}}$ is LOW. By proper manipulation of the inputs, the device can provide any logic functions of four variables. It cannot be used to multiplex analogue signals.

Fig. 2 Pinning diagram.

HEF4512BP(N): 16-lead DIL; plastic
(SOT38-1)
HEF4512BD(F): 16-lead DIL; ceramic (cerdip)
(SOT74)
HEF4512BT(D): 16-lead SO; plastic
(SOT109-1)
(): Package Designator North America

TRUTH TABLE

INPUTS													OUTPUT
$\overline{\mathrm{EO}}$	$\overline{\mathbf{E}}$	S_{2}	S_{1}	S_{0}	I_{0}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}	0
L	H	X	X	X	X	X	X	X	X	X	X	X	L
L	L	L	L	L	L	X	X	X	X	X	X	X	L
L	L	L	L	L	H	X	X	X	X	X	X	X	H
L	L	L	L	H	X	L	X	X	X	X	X	X	L
L	L	L	L	H	X	H	X	X	X	X	X	X	H
L	L	L	H	L	X	X	L	X	X	X	X	X	L
L	L	L	H	L	X	X	H	X	X	X	X	X	H
L	L	L	H	H	X	X	X	L	X	X	X	X	L
L	L	L	H	H	X	X	X	H	X	X	X	X	H
L	L	H	L	L	X	X	X	X	L	X	X	X	L
L	L	H	L	L	X	X	X	X	H	X	X	X	H
L	L	H	L	H	X	X	X	X	X	L	X	X	L
L	L	H	L	H	X	X	X	X	X	H	X	X	H
L	L	H	H	L	X	X	X	X	X	X	L	X	L
L	L	H	H	L	X	X	X	X	X	X	H	X	H
L	L	H	H	H	X	X	X	X	X	X	X	L	L
L	L	H	H	H	X	X	X	X	X	X	X	H	H
H	X	X	X	X	X	X	X	X	X	X	X	X	Z

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)

L = LOW state (the less positive voltage)
$X=$ state is immaterial
Z = high impedance OFF-state

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\mathbf{V}_{\text {DD }}$ \mathbf{V}	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
Dynamic power	5	$500 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$2100 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$5800 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)
			$\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

8-input multiplexer with 3-state output

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\mathbf{V}_{\text {DD }}$	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
LOW	5		35	70	ns	
	10	$t_{\text {PZL }}$	20	40	ns	
	15		15	30	ns	

APPLICATION INFORMATION

Some examples of applications for the HEF4512B are:

- Signal gating
- Digital multiplexing
- Number sequence generation

TRUTH TABLE for Fig. 4

A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	INPUT CONN. TO OUTPUT
L	L	L	L	L	0
L	L	L	L	H	1
L	L	L	H	L	2
L	L	L	H	H	3 via
L	L	H	L	L	40
L	L	H	L	H	5
L	L	H	H	L	6
L	L	H	H	H	7
L	H	L	L	L	8
L	H	L	L	H	9
L	H	L	H	L	10
L	H	L	H	H	11 via
L	H	H	L	L	12 1
L	H	H	L	H	13
L	H	H	H	L	14
L	H	H	H	H	15
H	L	L	L	L	16
H	L	L	L	H	17
H	L	L	H	L	18
H	L	L	H	H	19 via
H	L	H	L	L	202
H	L	H	L	H	21
H	L	H	H	L	22
H	L	H	H	H	23
H	H	L	L	L	24
H	H	L	L	H	25
H	H	L	H	L	26
H	H	L	H	H	27 via
H	H	H	L	L	28 3
H	H	H	L	H	29
H	H	H	H	L	30
H	H	H	H	H	31

Fig. $4 \quad 32$-input multiplexer using $4 \times$ HEF4512B and $1 \times$ HEF4011B. The input is selected by 5 -bit address $\left(\mathrm{A}_{4}\right.$ to $\left.\mathrm{A}_{0}\right)$ and presented at the output.

