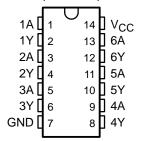


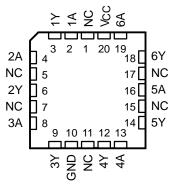
EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at www.hestore.hu.

SDLS049B – DECEMBER 1983 – REVISED FEBRUARY 2002


- Operation From Very Slow Edges
- Improved Line-Receiving Characteristics
- High Noise Immunity

description


Each circuit functions as an inverter, but because of the Schmitt action, it has different input threshold levels for positive-going (V_{T+}) and negative-going (V_{T-}) signals.

These circuits are temperature compensated and can be triggered from the slowest of input ramps and still give clean, jitter-free output signals.

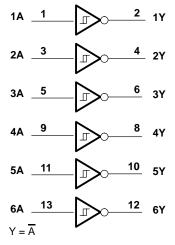
SN5414, SN54LS14...J OR W PACKAGE SN7414...D, N, OR NS PACKAGE SN74LS14...D, DB, OR N PACKAGE (TOP VIEW)

SN54LS14 . . . FK PACKAGE (TOP VIEW)

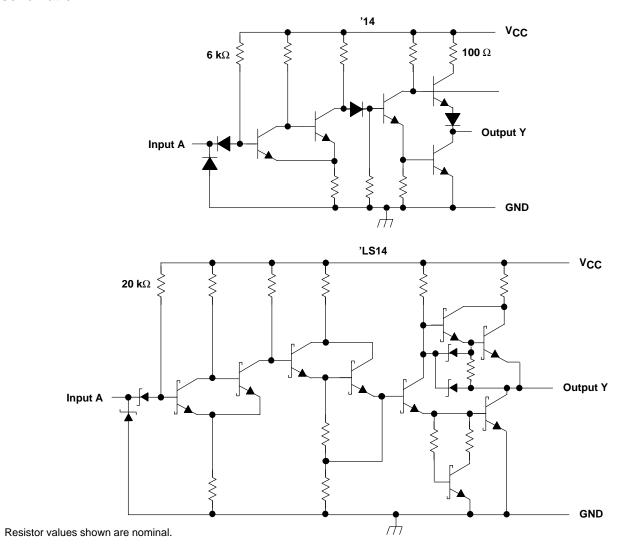
NC - No internal connection

ORDERING INFORMATION

TA	PACI	(AGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube	SN7414N	SN7414N
	PDIP - N	Tube	SN74LS14N	SN74LS14N
		Tube	SN7414D	7414
0°C to 70°C	SOIC - D	Tape and reel	SN7414DR	7414
	3010 - D	Tube	SN74LS14D	LS14
		Tape and reel	SN74LS14DR	L314
	SOP - NS	Tape and reel	SN7414NSR	SN7414
	SSOP – DB	Tape and reel	SN74LS14DBR	LS14
		Tube	SN5414J	SN5414J
	CDIP – J	Tube	SNJ5414J	SNJ5414J
	CDIF = J	Tube	SN54LS14J	SN54LS14J
–55°C to 125°C		Tube	SNJ54LS14J	SNJ54LS14J
	CFP – W	Tube	SNJ5414W	SNJ5414W
	GFF - W	Tube	SNJ54LS14W	SNJ54LS14W
	LCCC – FK	Tube	SNJ54LS14FK	SNJ54LS14FK


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


logic diagram (positive logic)

Pin numbers shown are for the D, DB, J, N, NS, and W packages.

schematic

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	
Input voltage: '14	5.5 V
'LS14	
Package thermal impedance, θ _{JA} (see Note 2): D	package 86°C/W
DE	package 96°C/W
N	ackage 80°C/W
NS	package 76°C/W
Storage temperaturerange, T _{stg}	—65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			SN5414			SN7414			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
ІОН	High-level output current			-0.8			-0.8	mA	
loL	Low-level output current			16			16	mA	
TA	Operating free-air temperature	-55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [‡]				SN5414 SN7414		
				MIN	TYP§	MAX	
V _{T+}	V _{CC} = 5 V			1.5	1.7	2	V
V_{T-}	V _{CC} = 5 V			0.6	0.9	1.1	V
Hysteresis (V _{T+} – V _T _)	V _{CC} = 5 V			0.4	0.8		V
VIK	V _{CC} = MIN,	I _I = -12 mA				-1.5	V
VOH	$V_{CC} = MIN,$	$V_{I} = 0.6 V$,	$I_{OH} = -0.8 \text{ mA}$	2.4	3.4		V
V _{OL}	$V_{CC} = MIN,$	$V_I = 2 V$,	I_{OL} = 16 mA		0.2	0.4	V
I _{T+}	$V_{CC} = 5 V$,	$V_I = V_{T+}$			-0.43		mA
I _T _	$V_{CC} = 5 V$,	$V_I = V_{T-}$			-0.56		mA
lį	$V_{CC} = MAX$,	V _I = 5.5 V				1	mA
liH	$V_{CC} = MAX$,	V _{IH} = 2.4 V				40	μΑ
I _{IL}	$V_{CC} = MAX$,	$V_{IL} = 0.4 V$			-0.8	-1.2	mA
los¶	$V_{CC} = MAX$			-18		-55	mA
Iссн	$V_{CC} = MAX$				22	36	mA
ICCL	$V_{CC} = MAX$				39	60	mA

[‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTES: 1. Voltage values are with respect to network ground terminal.

^{2.} The package termal impedance is calculated in accordance with JESD 51-7

[§] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[¶] Not more than one output should be shorted at a time.

SDLS049B - DECEMBER 1983 - REVISED FEBRUARY 2002

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

PARAMETER	FROM (INPUT)	TO	TEST CONDITIONS		TO SN5414 SN7414 SN7414				UNIT
	(INPOT)	(001F01)		MIN	TYP	MAX			
^t PLH	А	V	$R_L = 400 \Omega$, $C_L = 15 pF$		15	22	ns		
t _{PHL}		1	11 400 22, OL - 10 PI		15	22	113		

recommended operating conditions

		SN54LS14 SN74LS14		4	UNIT			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
ІОН	High-level output current			-0.4			-0.4	mA
loL	Low-level output current			4			8	mA
TA	Operating free-air temperature	-55		125	0	•	70	°C

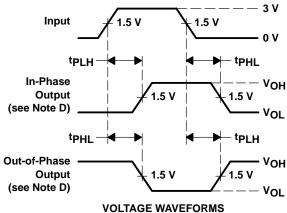
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED		TEST CONDITIONS†			SN54LS14			SN74LS14		
PARAMETER		TEST CONDITI	UNSI	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
V _{T+}	V _{CC} = 5 V			1.4	1.6	1.9	1.4	1.6	1.9	V
V _T	$V_{CC} = 5 V$			0.5	0.8	1	0.5	0.8	1	V
Hysteresis (V _{T+} – V _T –)	V _{CC} = 5 V			0.4	0.8		0.4	0.8		٧
VIK	$V_{CC} = MIN,$	I _I = -18 mA				-1.5			-1.5	V
Voн	$V_{CC} = MIN,$	$V_{I} = 0.5 V$,	$I_{OH} = -0.4 \text{ mA}$	2.5	3.4		2.7	3.4		V
Vol	V _{CC} = MIN,	V _I = -1.9 V	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	V
VOL	VCC = IVIIIA,	V = -1.9 V	$I_{OL} = 8 \text{ mA}$					0.35	0.5	V
I _{T+}	$V_{CC} = 5 V$,	$V_I = V_{T+}$			-0.14			-0.14		mA
I _T _	$V_{CC} = 5 V$,	$V_I = V_{T-}$			-0.18			-0.18		mA
IĮ	$V_{CC} = MAX$,	V _I = 7 V				0.1			0.1	mA
lін	$V_{CC} = MAX$,	$V_{IH} = 2.7 V$				20			20	μΑ
I _{IL}	$V_{CC} = MAX$,	$V_{IL} = 0.4 V$				-0.4			-0.4	mA
los§	$V_{CC} = MAX$			-20		-100	-20		-100	mA
ICCH	$V_{CC} = MAX$				8.6	16		8.6	16	mA
ICCL	$V_{CC} = MAX$		_		12	21		12	21	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Δ	V	$R_1 = 2 k\Omega$, $C_1 = 15 pF$		15	22	ns
tpHL		T	N _L = 2 N ₂ 2,		15	22	113


[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SDLS049B - DECEMBER 1983 - REVISED FEBRUARY 2002

SERIES 54/74 DEVICES Vcc ○ R_{L} Test Test **Point** S1 ۷сс **Point** From Output VCC **Under Test** (see Note B) (see Note A) From Output R_{L} 1 $k\Omega$ **Under Test** (see Note B) From Output Test **Under Test Point** (see Note A) (see Note A) S2 **LOAD CIRCUIT** LOAD CIRCUIT **LOAD CIRCUIT** FOR 2-STATE TOTEM-POLE OUTPUTS FOR OPEN-COLLECTOR OUTPUTS **FOR 3-STATE OUTPUTS High-Level Timing** 1.5 V **Pulse** Input th Low-Level Data **Pulse** Input **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS PULSE DURATIONS SETUP AND HOLD TIMES** Output 3 V Control .5 V (low-level enabling)

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

1.5 V

tPLZ

^tPHZ

≈1.5 V

V_{OH} – 0.5 V

NOTES: A. C_I includes probe and jig capacitance.

B. All diodes are 1N3064 or equivalent.

PROPAGATION DELAY TIMES

- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.

Waveform 1

(see Notes C

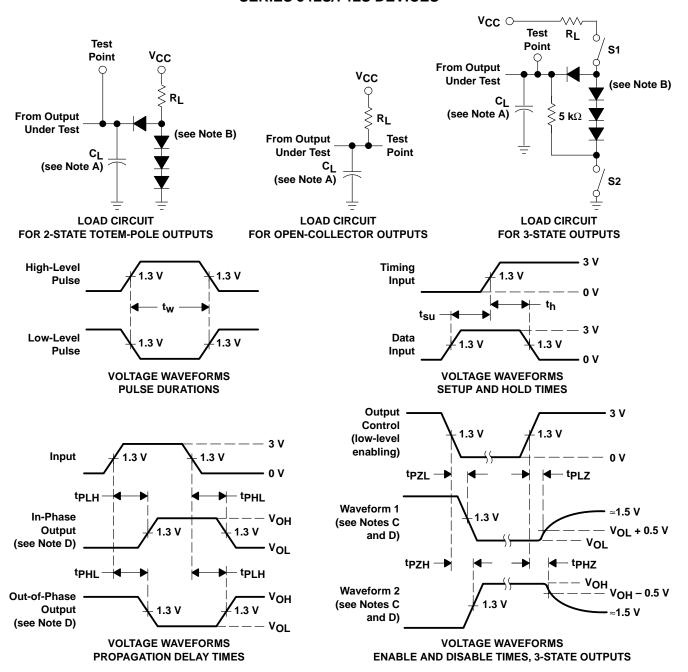
Waveform 2

(see Notes C

and D)

and D)

tPZL


tPZH -

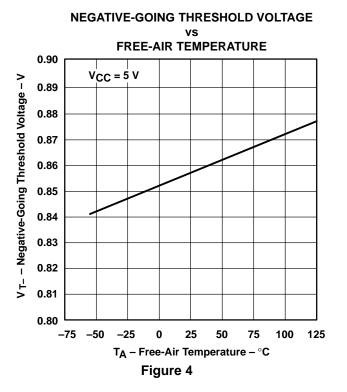
- E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50 \Omega$; t_r and $t_f \leq$ 7 ns for Series 54/74 devices and t_r and $t_f \le 2.5$ ns for Series 54S/74S devices.
- F. The outputs are measured one at a time with one input transition per measurement.

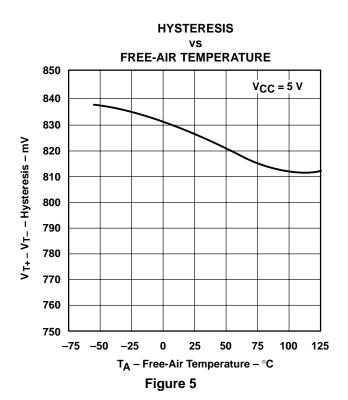
Figure 1. Load Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION SERIES 54LS/74LS DEVICES

- NOTES: A. C_L includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. S1 and S2 are closed for tpLH, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
 - E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
 - F. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50~\Omega$, $t_f \leq$ 1.5 ns, $t_f \leq$ 2.6 ns.
 - G. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

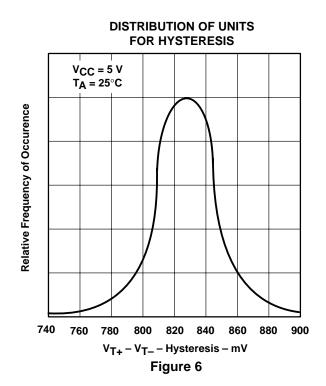


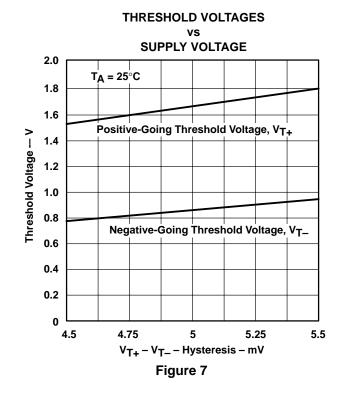

SDLS049B - DECEMBER 1983 - REVISED FEBRUARY 2002

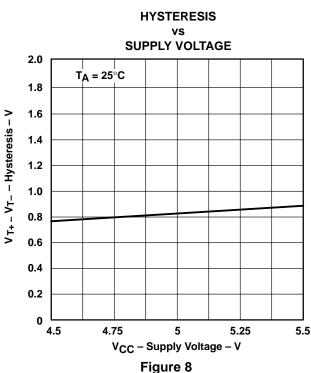
TYPICAL CHARACTERISTICS OF '14 CIRCUITST

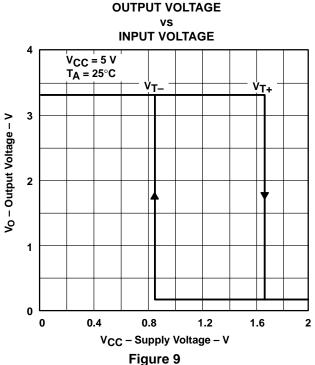
POSITIVE-GOING THRESHOLD VOLTAGE FREE-AIR TEMPERATURE 1.70 $V_{CC} = 5 V$ V_{T+} – Positive-Going Threshold Voltage – V 1.69 1.68 1.67 1.66 1.65 1.64 1.63 1.62 1.61 1.60 25 50 75 100 **–75 –50** -25 0 125 $T_{\mbox{A}}$ – Free-Air Temperature – $^{\circ}\mbox{C}$

Figure 3

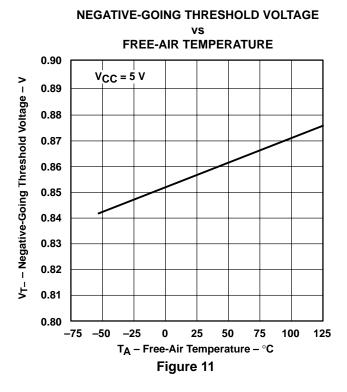


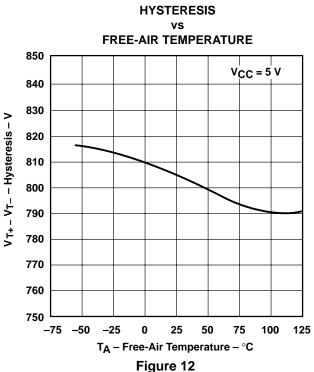


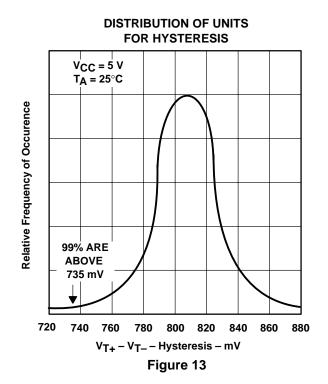

[†] Data for temperatures below 0°C and above 70°C and supply voltage below 4.75 V and above 5.25 V are applicable for SN5414 only.



TYPICAL CHARACTERISTICS OF '14 CIRCUITS'

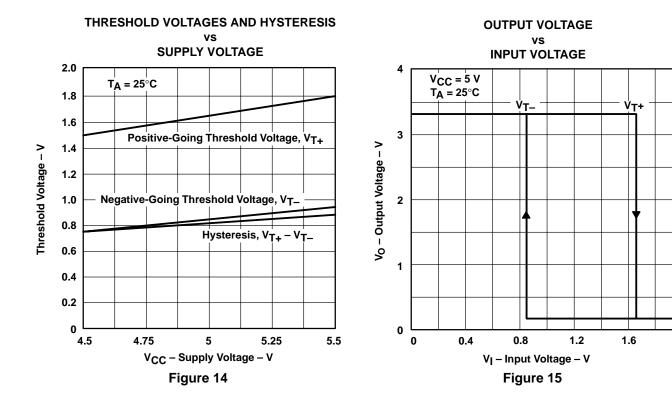



† Data for temperatures below 0°C and above 70°C and supply voltage below 4.75 V and above 5.25 V are applicable for SN5414 only.

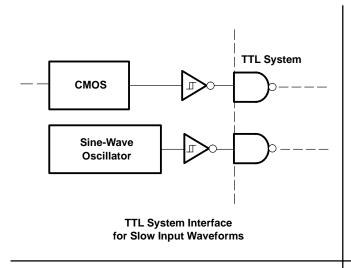


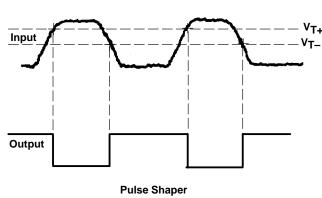
TYPICAL CHARACTERISTICS OF 'LS14 CIRCUITS'

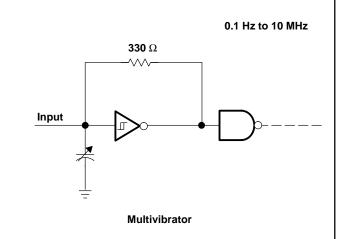
POSITIVE-GOING THRESHOLD VOLTAGE FREE-AIR TEMPERATURE 1.70 $V_{CC} = 5 V$ VT+ - Positive-Going Threshold Voltage - V 1.69 1.68 1.67 1.66 1.65 1.64 1.63 1.62 1.61 1.60 -75 -50 25 50 75 100 125 T_A - Free-Air Temperature - °C Figure 10

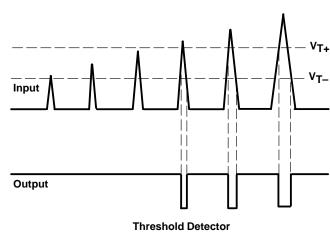


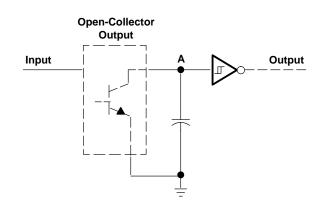
[†] Data for temperatures below 0°C and above 70°C and supply voltage below 4.75 V and above 5.25 V are applicable for SN5414 only.

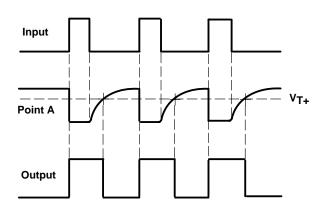

TYPICAL CHARACTERISTICS OF 'LS14 CIRCUITS'




[†] Data for temperatures below 0°C and above 70°C and supply voltage below 4.75 V and above 5.25 V are applicable for SN5414 only.




TYPICAL APPLICATION DATA



Pulse Stretcher

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated