HESTORE.HU

EN: This Datasheet is presented by the manufacturer.
Please visit our website for pricing and availability at www.hestore.hu.

74HC4053; 74HCT4053

Triple 2-channel analog multiplexer/demultiplexer
Rev. 04 - 9 May 2006
Product data sheet

1. General description

The 74 HC 4053 ; 74HCT4053 is a high-speed Si-gate CMOS device and is pin compatible with the HEF4053B. It is specified in compliance with JEDEC standard no. 7A.

The 74 HC 4053 ; 74HCT4053 is triple 2-channel analog multiplexer/demultiplexer with a common enable input ($\overline{\mathrm{E}}$). Each multiplexer/demultiplexer has two independent inputs/outputs ($\mathrm{n} Y 0$ and nY 1), a common input/output (nZ) and three digital select inputs (Sn).

With \bar{E} LOW, one of the two switches is selected (low-impedance ON-state) by S1 to S3. With \bar{E} HIGH, all switches are in the high-impedance OFF-state, independent of S1 to S3.
$V_{C C}$ and GND are the supply voltage pins for the digital control inputs (S1 to S3 and $\overline{\mathrm{E}}$). The V_{Cc} to GND ranges are 2.0 V to 10.0 V for 74 HC 4053 and 4.5 V to 5.5 V for 74 HCT 4053 . The analog inputs/outputs ($\mathrm{nY0}$ and nY 1 , and $n Z$) can swing between V_{Cc} as a positive limit and V_{EE} as a negative limit. $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ may not exceed 10.0 V .

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

2. Features

- Low ON resistance:
- 80Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$
- 70Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=6.0 \mathrm{~V}$
- 60Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9.0 \mathrm{~V}$
- Logic level translation:
- To enable 5 V logic to communicate with $\pm 5 \mathrm{~V}$ analog signals
- Typical 'break before make' built in
- Complies with JEDEC standard no. 7A
- ESD protection:
- HBM EIA/JESD22-A114-C exceeds 2000 V
- MM EIA/JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3. Applications

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

4. Quick reference data

Table 1: Quick reference data
$V_{E E}=G N D=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C} ; t_{r}=t_{f}=6 \mathrm{~ns}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
74HC4053						
$\begin{aligned} & \mathrm{t}_{\text {tPH }}, \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	turn-ON time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$				
	\bar{E} to $V_{\text {os }}$		-	17	-	ns
	Sn to $\mathrm{V}_{\text {os }}$		-	21	-	ns
$\begin{aligned} & \text { tpHZ, } \\ & \text { tpLZ } \end{aligned}$	turn-OFF time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$				
	\bar{E} to $V_{\text {os }}$		-	18	-	ns
	Sn to $\mathrm{V}_{\text {os }}$		-	17	-	ns
Ci_{i}	input capacitance		-	3.5	-	pF
$\mathrm{C}_{\text {S }}$	switch capacitance					
	independent I/O (nYn)		-	5	-	pF
	common I/O (nZ)		-	8	-	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}	[1] -	36	-	pF

74HCT4053

$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}}, \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	turn-ON time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$				
	\bar{E} to $V_{\text {os }}$			23		ns
	Sn to $\mathrm{V}_{\text {os }}$			21		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}}, \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	turn-OFF time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$				
	\bar{E} to $V_{\text {os }}$			20	-	ns
	Sn to $\mathrm{V}_{\text {os }}$			19		ns
Ci_{i}	input capacitance			3.5	-	pF
$\mathrm{C}_{\text {S }}$	switch capacitance					
	independent I/O (nYn)			5	-	pF
	common I/O(nZ)		-	8	-	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to ($\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$)	[1] -	36	-	pF

[1] $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$). $P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{0}=$ output frequency in MHz;
$\Sigma\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{S}}=$ maximum switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

5. Ordering information

Table 2: Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74HC4053				
74HC4053N	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DIP16	plastic dual in-line package; 16 leads (300 mil); long body	SOT38-4
74HC4053D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HC4053DB	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1
74HC4053PW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74HC4053BQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$	SOT763-1
74HCT4053				
74HCT4053N	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DIP16	plastic dual in-line package; 16 leads (300 mil); long body	SOT38-4
74HCT4053D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HCT4053DB	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1
74HCT4053PW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74HCT4053BQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$	SOT763-1

6. Functional diagram

Fig 1. Functional diagram

Fig 2. Logic symbol

Fig 3. IEC logic symbol

Fig 4. Schematic diagram (one switch)

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3: Pin description

Symbol	Pin	Description
2 Y1	1	2 independent input/output 1
2 Y0	2	2 independent input/output 0
$3 Y 1$	3	3 independent input/output 1
$3 Z$	4	3 common input/output
$3 Y 0$	5	3 independent input/output 0
\bar{E}	6	enable input (active LOW)
V $_{\text {EE }}$	7	negative supply voltage
GND	8	ground (0 V)
S3	9	select input 3
S2	10	select input 2
S1	11	select input 1
$1 Y 0$	12	1 independent input/output 0
$1 Y 1$	13	1 independent input/output 1
$1 Z$	14	1 common input/output
$2 Z$	15	2 common input/output
V	16	supply voltage

8. Functional description

8.1 Function table

Table 4: Function table [1]

Control	Channel on	
E	Sn	
L	L	$\mathrm{nY0}$ to nZ
	H	$\mathrm{nY1}$ to nZ
H	X	none

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level;
L = LOW voltage level;
$X=$ don't care.

9. Limiting values

Table 5: Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{E E}=G N D($ ground $=0 V) . \underline{[1]}$

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+11.0	V
I_{IK}	input clamping current	$\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
I_{SK}	switch clamping current	$\mathrm{V}_{\mathrm{S}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA

74HC4053; 74HCT4053

Triple 2-channel analog multiplexer/demultiplexer

Table 5: Limiting values ...continued
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{E E}=G N D($ ground $=0$ V). $\underline{[1]}$

Symbol	Parameter	Conditions	Min	Max	Unit
Is	switch current	$-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$		± 25	mA
$\mathrm{I}_{\text {EE }}$	negative supply current			-20	mA
$I_{\text {cc }}$	quiescent supply current		-	50	mA
$\mathrm{I}_{\text {GND }}$	ground current		-	-50	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
	DIP16 package		[2]	750	mW
	SO16 package		[3]	500	mW
	SSOP16 package		[4] -	500	mW
	TSSOP16 package		[4]	500	mW
	DHVQFN16 package		[5]	500	mW
P_{S}	power dissipation per switch		-	100	mW

[1] To avoid drawing V_{cc} current out of terminals nZ , when switch current flows in terminals nYn , the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminals $n Z$, no V_{CC} current will flow out of terminals nYn . In this case there is no limit for the voltage drop across the switch, but the voltages at $n Y n$ and $n Z$ may not exceed $V_{C C}$ or $V_{E E}$.
[2] For DIP16 package: $P_{\text {tot }}$ derates linearly with $12 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.
[3] For SO16 package: $\mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.
[4] For SSOP16 and TSSOP16 packages: $P_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$ above $60^{\circ} \mathrm{C}$.
[5] For DHVQFN16 packages: $\mathrm{P}_{\text {tot }}$ derates linearly with $4.5 \mathrm{~mW} / \mathrm{K}$ above $60^{\circ} \mathrm{C}$.

10. Recommended operating conditions

Table 6: Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
74HC4053						
$\Delta \mathrm{V}_{\mathrm{CC}}$	supply voltage difference	see Figure 7				
	$\mathrm{V}_{\text {CC }}$ - GND		2.0	5.0	10.0	V
	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$		2.0	5.0	10.0	V
V_{1}	input voltage		GND	-	V_{CC}	V
V_{S}	switch voltage		V_{EE}	-	V_{CC}	V
Tamb	ambient temperature		-40	+25	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	-	6.0	1000	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	6.0	500	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	6.0	400	ns
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	6.0	250	ns
74HCT4053						
$\Delta \mathrm{V}_{\mathrm{CC}}$	supply voltage difference	see Figure 7				
	$V_{C C}$ - GND		4.5	5.0	5.5	V
	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$		2.0	5.0	10.0	V

Triple 2-channel analog multiplexer/demultiplexer

Table 6: Recommended operating conditions ...continued

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{l}	input voltage		GND	-	V_{CC}	V
V_{S}	switch voltage		V_{EE}	-	V_{CC}	V
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature		-40	+25	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	6.0	500	ns

Fig 7. Guaranteed operating area as a function of the supply voltages

11. Static characteristics

Table 7: Ron resistance per switch 74HC4053 and 74HCT4053
For test circuit see Figure 8.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.
74 HC 4053 supply voltages: $V_{C C}-G N D$ or $V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
$74 H C T 4053$ supply voltages: $V_{C C}-G N D=4.5 \mathrm{~V}$ or 5.5 V ; $V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
$\mathrm{R}_{\text {ON(} \text { (peak) }}$	ON resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or V_{IL}				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	100	180	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	90	160	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	70	130	Ω

74HC4053; 74HCT4053

Triple 2-channel analog multiplexer/demultiplexer

Table 7: Ron resistance per switch 74HC4053 and 74HCT4053 ...continued
For test circuit see Figure 8.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.
$74 \mathrm{HC4053}$ supply voltages: $V_{C C}-G N D$ or $V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
74 HCT 4053 supply voltages: $V_{C C}-G N D=4.5 \mathrm{~V}$ or $5.5 \mathrm{~V} ; V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{R}_{\mathrm{ON}(\text { (rail) }}$	ON resistance (rail)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {EE }} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	150	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	80	140	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	70	120	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	60	105	Ω
		$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	150	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	90	160	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	80	140	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	65	120	Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON resistance mismatch between channels	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	9	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	8	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	6	-	Ω
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
$\mathrm{R}_{\mathrm{ON}(\text { peak })}$	ON resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	225	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	200	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	165	Ω
$\mathrm{R}_{\text {ON(rail) }}$	ON resistance (rail)	$\mathrm{V}_{\mathrm{is}}=\mathrm{V}_{\mathrm{EE}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	175	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	150	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	130	Ω
		$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }} ; \mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	200	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	175	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	150	Ω

$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$					
$\mathrm{R}_{\text {ON(peak) }} \mathrm{ON}$ resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	270	Ω
	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	240	Ω
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	195	Ω

74HC4053; 74HCT4053

Triple 2-channel analog multiplexer/demultiplexer

Table 7: $\quad R_{\text {ON }}$ resistance per switch 74HC4053 and 74HCT4053 ...continued
For test circuit see Figure 8.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.
$74 \mathrm{HC4053}$ supply voltages: $V_{C C}-G N D$ or $V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
74 HCT 4053 supply voltages: $V_{C C}-G N D=4.5 \mathrm{~V}$ or $5.5 \mathrm{~V} ; V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{R}_{\mathrm{ON}(\text { rail) }}$	ON resistance (rail)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {EE }} ; \mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	210	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	180	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	160	Ω
		$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or V_{IL}				
		$\mathrm{V}_{C C}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	240	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	210	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	180	Ω

[1] At supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ approaching 2.0 V the analog switch ON resistance becomes extremely non-linear. Therefore, it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

Fig 8. Test circuit for measuring R_{ON}

$$
V_{\text {is }}=0 V \text { to }\left(V_{C C}-V_{E E}\right)
$$

(1) $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
(2) $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$
(3) $V_{C C}=9 \mathrm{~V}$

Fig 9. Typical $R_{O N}$ as a function of input voltage $V_{\text {is }}$

Table 8: \quad Static characteristics 74HC4053
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
V_{IH}	HIGH-state input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	1.2	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15	2.4	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.2	3.2	-	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6.3	4.7	-	V
VIL	LOW-state input voltage	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	-	0.8	0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	2.1	1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	2.8	1.8	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	-	4.3	2.7	V
$\mathrm{I}_{\text {LI }}$	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 0.1	$\mu \mathrm{A}$
		$\mathrm{V}_{C C}=10.0 \mathrm{~V}$	-	-	± 0.2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 10 \end{aligned}$				
		per channel	-	-	± 0.1	$\mu \mathrm{A}$
		all channels	-	-	± 0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 11 \end{aligned}$	-	-	± 0.1	$\mu \mathrm{A}$
Icc	quiescent supply current	$\begin{aligned} & V_{\text {is }}=V_{E E} \text { or } V_{C C} ; V_{\text {OS }}=V_{C C} \text { or } V_{E E} ; \\ & V_{I}=V_{C C} \text { or } G N D ; V_{E E}=0 V \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	8.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	16.0	$\mu \mathrm{A}$
C_{i}	input capacitance		-	3.5	-	pF
$\mathrm{C}_{\text {S }}$	switch capacitance					
	independent I/O (nYn)		-	5	-	pF
	common I/O (nZ)		-	8	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-state input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.2	-	-	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6.3	-	-	V
V_{IL}	LOW-state input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	1.8	V
		$\mathrm{V}_{\text {CC }}=9.0 \mathrm{~V}$	-	-	2.7	V
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$				
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{C C}=10.0 \mathrm{~V}$	-	-	± 2.0	$\mu \mathrm{A}$

Table 8: Static characteristics 74HC4053 ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 10} \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 11} \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	quiescent supply current	$\begin{aligned} & V_{\text {is }}=V_{E E} \text { or } V_{C C} ; V_{\text {OS }}=V_{C C} \text { or } V_{E E} ; \\ & V_{I}=V_{C C} \text { or } G N D ; V_{E E}=0 V \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	80.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-state input voltage	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	1.5	-	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	3.15	-	-	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	4.2	-	-	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6.3	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-state input voltage	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	-	-	0.5	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	-	1.35	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	1.8	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	-	-	2.7	V
ILI^{\prime}	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{C C}=10.0 \mathrm{~V}$	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \text {; } \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 10 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{IS}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \text {; } \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 11 \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	quiescent supply current	$\begin{aligned} & V_{\text {is }}=V_{E E} \text { or } V_{C C} ; V_{\text {OS }}=V_{C C} \text { or } V_{E E} ; \\ & V_{I}=V_{C C} \text { or } G N D ; V_{E E}=0 V \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	320.0	$\mu \mathrm{A}$

Table 9: Static characteristics 74HCT4053
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{\text {is }}$ is the input voltage at a $n Y n$ or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\mathrm{amb}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$						
V_{IH}	H HGH-state input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	1.6	-	$\mu \mathrm{A}$
V_{IL}	LOW-state input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	1.2	0.8	$\mu \mathrm{~A}$

74HC_HCT4053_4

Table 9: Static characteristics 74HCT4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\text {LI }}$	input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	-	-	± 0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 10 \end{aligned}$				
		per channel	-	-	± 0.1	$\mu \mathrm{A}$
		all channels	-	-	± 0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 11 \end{aligned}$	-	-	± 0.1	$\mu \mathrm{A}$
$I_{\text {cc }}$	quiescent supply current	$\begin{aligned} & V_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	8.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$	-	-	16.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional quiescent supply current	per input pin; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or $G N D$	-	50	180	$\mu \mathrm{A}$
C_{i}	input capacitance		-	3.5	-	pF
$\mathrm{C}_{\text {S }}$	switch capacitance					
	independent I/O (nYn)		-	5	-	pF
	common I/O (nZ)		-	8	-	pF
$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-state input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	$\mu \mathrm{A}$
V_{IL}	LOW-state input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	$\mu \mathrm{A}$
l_{LI}	input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 10} \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 11 \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
ICC	quiescent supply current	$\begin{aligned} & V_{1}=V_{C C} \text { or } G N D ; V_{\text {is }}=V_{E E} \text { or } V_{C C} ; \\ & V_{\text {OS }}=V_{C C} \text { or } V_{E E} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	80.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional quiescent supply current	per input pin; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or $G N D$	-	-	225	$\mu \mathrm{A}$
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-state input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	LOW-state input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	$\mu \mathrm{A}$
l LI	input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	-	-	± 1.0	$\mu \mathrm{A}$

Table 9: Static characteristics 74HCT4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 10 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{IS}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \mid \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 11} \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\begin{aligned} & V_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$	-	-	320.0	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional quiescent supply current	per input pin; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or GND	-	-	245	$\mu \mathrm{A}$

Fig 10. Test circuit for measuring OFF-state leakage current

Fig 11. Test circuit for measuring ON -state leakage current

12. Dynamic characteristics

Table 10: Dynamic characteristics type 74HC4053
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless otherwise specified; for test circuit see Figure 14.
$V_{i s}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$					
$t_{\text {PHL }}$, propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=\infty \Omega$; see $\underline{\text { Figure } 12}$				
tple	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	15	60	ns
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	5	12	ns
	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	4	10	ns
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	4	8	ns

Table 10: Dynamic characteristics type 74HC4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $t_{r}=t_{f}=6 \mathrm{~ns}$; $C_{L}=50 \mathrm{pF}$ unless otherwise specified; for test circuit see Figure 14.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\begin{aligned} & \mathrm{t}_{\text {PZH }}, \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	turn-ON time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13				
	E to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	60	220	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	20	44	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	16	37	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	15	31	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	17	-	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	75	220	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	25	44	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	20	37	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	15	31	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	21	-	ns
$\begin{aligned} & \text { tpHZ, } \\ & \text { tpLZ } \end{aligned}$	turn-OFF time	$R_{L}=1 \mathrm{k} \Omega$; see Figure 13				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	63	210	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	21	42	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	17	36	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V}$	-	15	29	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	18	-	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	60	210	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	20	42	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	16	36	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	15	29	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	17	-	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}	[1] -	36	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
$t_{\text {PHL }}$, propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$ tpLh		$\mathrm{R}_{\mathrm{L}}=\infty$; see Figure 12				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	75	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	15	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	13	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	10	ns

Table 10: Dynamic characteristics type 74HC4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $t_{r}=t_{f}=6 \mathrm{~ns}$; $C_{L}=50 \mathrm{pF}$ unless otherwise specified; for test circuit see Figure 14.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}}, \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	turn-ON time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	275	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	55	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	47	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	39	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	275	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	55	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	47	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	39	ns
$\begin{aligned} & \text { tphZ, } \\ & \text { tpLZ } \end{aligned}$	turn-OFF time	$R_{L}=1 \mathrm{k} \Omega$; see $\underline{\text { Figure } 13}$				
	$\overline{\mathrm{E}} \text { to } \mathrm{V}_{\mathrm{os}}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	265	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	53	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	45	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	36	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	265	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	53	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	45	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	36	ns
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
tPHL,$\mathrm{t}_{\text {PLH }}$	propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=\infty$; see Figure 12				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	90	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	18	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	15	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	12	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPzH}}, \\ & \mathrm{t}_{\text {PzL }} \end{aligned}$	turn-ON time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13				
	\bar{E} to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	330	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	66	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	56	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V}$	-	-	47	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	330	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	66	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	56	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	47	ns

Table 10: Dynamic characteristics type 74HC4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $t_{r}=t_{f}=6 \mathrm{~ns}$; $C_{L}=50 \mathrm{pF}$ unless otherwise specified; for test circuit see Figure 14.
$V_{\text {is }}$ is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\begin{aligned} & \text { tpHZ, } \\ & \text { tpLZ } \end{aligned}$	turn-OFF time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13				
	$\bar{E} \text { to } V_{o s}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	315	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	63	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	54	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	44	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	315	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	63	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	54	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	44	ns

[1] $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{0}=$ output frequency in MHz ;
$\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{S}}=$ maximum switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

Table 11: Dynamic characteristics type 74HCT4053
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless otherwise specified; for test circuit see Figure 14.
$\overline{V_{i s}}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
$t_{\text {PHL }}$, tpLH	propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=\infty$; see Figure 12				
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	5	12	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	4	8	ns
$\begin{aligned} & \mathrm{t}_{\text {PZH }}, \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	turn-ON time	$R_{L}=1 \mathrm{k} \Omega$; see $\underline{\text { Figure } 13}$				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	27	48	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	16	34	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	23	-	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	25	48	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	16	34	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	21	-	ns

74HC4053; 74HCT4053

Triple 2-channel analog multiplexer/demultiplexer

Table 11: Dynamic characteristics type 74HCT4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $t_{r}=t_{f}=6 \mathrm{~ns}$; $C_{L}=50 \mathrm{pF}$ unless otherwise specified; for test circuit see Figure 14.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}}, \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	turn-OFF time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V}$	-	24	44	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	15	31	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	20	-	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	22	44	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	15	31	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	19	-	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to ($\left.\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right)$	[1] -	36	-	pF

$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
$t_{\text {PHL }}$, tple	propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 12				
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	15	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	10	ns
$\begin{aligned} & \text { tPZH, } \\ & \text { tPZL } \end{aligned}$	turn-ON time	$\mathrm{V}_{C C}=4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see $\underline{\text { Figure } 13}$				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	60	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	43	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	60	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	43	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H Z}, \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	turn-OFF time	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	55	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	39	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	55	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	39	ns

$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$t_{\text {PHL }}, \quad$ propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\mathrm{os}} \quad \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; $\mathrm{R}_{\mathrm{L}}=\infty \Omega$; see $\underline{\text { Figure } 12}$

Table 11: Dynamic characteristics type 74HCT4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $t_{r}=t_{f}=6 \mathrm{~ns}$; $C_{L}=50 \mathrm{pF}$ unless otherwise specified; for test circuit see Figure 14.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	turn-OFF time	$\mathrm{V}_{C C}=4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	66	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	47	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	66	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	47	ns

[1] C_{PD} is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{S}}=$ maximum switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

13. Waveforms

Fig 12. Propagation delay input $\left(\mathrm{V}_{\text {is }}\right)$ to output (V_{os})

Test data is given in Table 13.
$R_{T}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{L}=$ Load resistor.
S1 = Test selection switch.
Fig 14. Load circuitry for switching times

Table 13: Test data

Test	Input				Load		S1 position
	$\mathrm{V}_{\mathbf{I}}$	$\mathrm{V}_{\text {is }}$	t_{r}, t_{f}		C_{L}	\mathbf{R}_{L}	
			at $\mathrm{f}_{\text {max }}$	other			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	[1]	pulse	$<2 \mathrm{~ns}$	6 ns	$15 \mathrm{pF}, 50 \mathrm{pF}$	$1 \mathrm{k} \Omega$	open
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	[1]	$\mathrm{V}_{\text {CC }}$	$<2 \mathrm{~ns}$	6 ns	$15 \mathrm{pF}, 50 \mathrm{pF}$	$1 \mathrm{k} \Omega$	$V_{\text {EE }}$
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	[1]	V_{EE}	$<2 \mathrm{~ns}$	6 ns	$15 \mathrm{pF}, 50 \mathrm{pF}$	$1 \mathrm{k} \Omega$	V_{CC}

[1] V_{I} values:
a) For 74 HC 4053 : $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{Cc}}$.
b) For $74 \mathrm{HCT} 4053: \mathrm{V}_{1}=3 \mathrm{~V}$.

14. Additional dynamic characteristics

Table 14: Additional dynamic characteristics 74HC4053 and 74HCT4053
$G N D=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$.
$V_{\text {is }}$ is the input voltage at an nYn or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at an $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{d}_{\text {sin }}$	sine wave distortion	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; see Figure 15				
		$\mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz}$				
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V} ; \mathrm{V}_{\text {is }}=4.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.04	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{V}_{\text {is }}=8.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.02	-	\%
		$\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz}$				
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V} ; \mathrm{V}_{\text {is }}=4.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.12	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{V}_{\text {is }}=8.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.06	-	\%
$\alpha_{\text {(OFF)(ft) }}$	OFF-state feed-through attenuation	$R_{L}=600 \Omega ; C_{L}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 16	[1]			
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	-	-50	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-50	-	dB
$\mathrm{V}_{\mathrm{ct} \text { (sw-sw) }}$	crosstalk between switches	$R_{L}=600 \Omega ; C_{L}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 17	[1]			
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	-	-60	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V}$	-	-60	-	dB
$\mathrm{V}_{\text {ct(d-sw) }}$	crosstalk between digital inputs and switch	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=600 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \text { see Figure } 18 \end{aligned}$	[2]			
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	110	-	mV
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	220	-	mV
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$; see $\underline{\text { Figure } 19}$	[3]			
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-2.25 \mathrm{~V}$	-	160	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	170	-	MHz

[1] Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600Ω).
[2] Control input \bar{E} or Sn , with square-wave between V_{CC} and GND.
[3] Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level at $\mathrm{V}_{\text {os }}$ for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.

Fig 15. Test circuit for measuring sine wave distortion

a. Switch ON

b. Switch OFF

Fig 17. Test circuits for measuring crosstalk between any two switches

Fig 18. Test circuit for measuring crosstalk between digital inputs and switch

a. Typical frequency response

b. Test circuit

Fig 19. Typical frequency response

15. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max }{A}$	$\underset{\mathrm{min}}{\mathbf{A}_{1}}$	$\begin{gathered} \mathbf{A}_{2} \\ \max \end{gathered}$	b	b_{1}	b_{2}	C	$D^{(1)}$	$E^{(1)}$	e	\mathbf{e}_{1}	L	M_{E}	$\mathbf{M}_{\mathbf{H}}$	w	$Z^{(1)}$ max.
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	0.76
inches	0.17	0.02	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.049 \\ & 0.033 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.1	0.3	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.03

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN	
	IEC	JEDEC	JEITA		PROJECTION
SOT38-4					

Fig 20. Package outline SOT38-4 (DIP16)
DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	C	$D^{(1)}$	$E^{(1)}$	e	HE_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.0100 \\ & 0.0075 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of $0.15 \mathrm{~mm}(0.006 \mathrm{inch})$ maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT109-1	$076 E 07$	MS-012			$03-02-19$	

Fig 21. Package outline SOT109-1 (SO16)
74HC_HCT4053_4

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \text { A } \\ \text { max. } \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & \hline 6.4 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.2 \end{aligned}$	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 1.00 \\ & 0.55 \end{aligned}$	8° 0

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT338-1		MO-150		¢ (¢)	$\begin{aligned} & -99-12-27 \\ & 03-02-19 \end{aligned}$

Fig 22. Package outline SOT338-1 (SSOP16)

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(2)}$	e	HE_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.1	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$	0.25	$\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	5.1	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	$\begin{aligned} & \hline 6.6 \\ & 6.2 \end{aligned}$	1	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.40 \\ & 0.06 \end{aligned}$	8° 0

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT403-1		MO-153			-	

Fig 23. Package outline SOT403-1 (TSSOP16)

[^0]DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads;
16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$

Fig 24. Package outline SOT763-1 (DHVQFN16)
74HC_HCT4053_4

16. Abbreviations

Table 15: Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
HBM	Human Body Model
ESD	ElectroStatic Discharge
MM	Machine Model
DUT	Device Under Test

17. Revision history

Table 16: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74HC_HCT4053_4	20060509	Product data sheet			74HC_HCT4053_3
Modifications:	- Section 5 "Ordering information": errors corrected, type numbers in wrong order and SOT38-4 is the package for types 74 HC 4053 N and 74 HCT 4053 N				
74HC_HCT4053_3	20060315	Product data sheet			74HC_HCT4053_ CNV_2
Modifications:	- The format of this data sheet has been redesigned to comply with the new presentation and information standard of Philips Semiconductors. - Added type numbers 74HC4053BQ and 74HCT4053BQ (DHVQFN16) package to Section 5 "Ordering information", Section 7 "Pinning information" and Section 15 "Package outline"				
74HC_HCT4053_CNV_2	19901201	Product specification			

18. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

19. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

20. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

21. Trademarks

Notice - All referenced brands, product names, service names and trademarks are the property of their respective owners.

22. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

23. Contents

1 General description 1
2 Features 1
3 Applications 2
4 Quick reference data 2
5 Ordering information 3
6 Functional diagram 4
7 Pinning information 5
7.1 Pinning 5
7.2 Pin description 6
8 Functional description 6
8.1 Function table 6
9 Limiting values 6
10 Recommended operating conditions. 7
11 Static characteristics 8
12 Dynamic characteristics 14
13 Waveforms 19
14 Additional dynamic characteristics 22
15 Package outline 26
16 Abbreviations. 31
17 Revision history. 31
18 Data sheet status 32
19 Definitions 32
20 Disclaimers. 32
21 Trademarks 32
22 Contact information 32
© Koninklijke Philips Electronics N.V. 2006
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

[^0]: 74HC_HCT4053_4

