HESTORE.HU

EN: This Datasheet is presented by the manufacturer.
Please visit our website for pricing and availability at www.hestore.hu.

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT151 8-input multiplexer

PHILIPS

8-input multiplexer

FEATURES

- True and complement outputs
- Multifunction capability
- Permits multiplexing from n lines to 1 line
- Non-inverting data path
- See the " 251 " for the 3-state version
- Output capability: standard
- I IC category: MSI

GENERAL DESCRIPTION

The $74 \mathrm{HC} / \mathrm{HCT} 151$ are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	```propagation delay In to Y, }\overline{Y Sn to Y, \overline{Y} E to Y \overline{E}}\mathrm{ to }\overline{Y```	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & 17 \\ & 19 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & 19 \\ & 20 \\ & 13 \\ & 18 \end{aligned}$	ns ns ns ns
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per package	notes 1 and 2	40	40	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):

$$
P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}^{2} \times f_{0}\right) \text { where: }
$$

$f_{i}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ORDERING INFORMATION
See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
$4,3,2,1,15,14,13,12$	I_{0} to I_{7}	multiplexer inputs
5	Y	multiplexer output
6	$\overline{\mathrm{Y}}$	complementary multiplexer output
7	$\overline{\mathrm{E}}$	enable input (active LOW)
8	GND	ground (0 V)
$11,10,9$	$\mathrm{~S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$	select inputs
16	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Fig. 1 Pin configuration.

Fig. 2 Logic symbol.

Fig. 3 IEC logic symbol.

FUNCTION TABLE

INPUTS												OUTPUTS	
$\overline{\mathrm{E}}$	S_{2}	S_{1}	S_{0}	I_{0}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}	$\overline{\mathbf{Y}}$	Y
H	X	X	X	X	X	X	X	X	X	X	X	H	L
L	L	L	L	L	X	X	X	X	X	X	X	H	L
L	L	L	L	H	X	X	X	X	X	X	X	L	H
L	L	L	H	X	L	X	X	X	X	X	X	H	L
L	L	L	H	X	H	X	X	X	X	X	X	L	H
L	L	H	L	X	X	L	X	X	X	X	X	H	L
L	L	H	L	X	X	H	X	X	X	X	X	L	H
L	L	H	H	X	X	X	L	X	X	X	X	H	L
L	L	H	H	X	X	X	H	X	X	X	X	L	H
L	H	L	L	X	X	X	X	L	X	X	X	H	L
L	H	L	L	X	X	X	X	H	X	X	X	L	H
L	H	L	H	X	X	X	X	X	L	X	X	H	L
L	H	L	H	X	X	X	X	X	H	X	X	L	H
L	H	H	L	X	X	X	X	X	X	L	X	H	L
L	H	H	L	X	X	X	X	X	X	H	X	L	H
L	H	H	H	X	X	X	X	X	X	X	L	H	L
L	H	H	H	X	X	X	X	X	X	X	H	L	H

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level
X = don't care.

Fig. 4 Functional diagram.

Fig. 5 Logic diagram.

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
ICC category: MSI

AC CHARACTERISTICS FOR 74HC

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb $\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HC								V_{Cc} (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay I_{n} to Y		$\begin{aligned} & 52 \\ & 19 \\ & 15 \end{aligned}$	$\begin{array}{\|l} \hline 170 \\ 34 \\ 29 \end{array}$		$\begin{aligned} & 215 \\ & 43 \\ & 37 \end{aligned}$		$\begin{aligned} & \hline 255 \\ & 51 \\ & 43 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay I_{n} to $\overline{\mathrm{Y}}$		$\begin{aligned} & 58 \\ & 21 \\ & 17 \end{aligned}$	$\begin{aligned} & 185 \\ & 37 \\ & 31 \end{aligned}$		$\begin{aligned} & 230 \\ & 46 \\ & 39 \end{aligned}$		$\begin{array}{\|l\|} \hline 280 \\ 56 \\ 48 \\ \hline \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay S_{n} to Y		$\begin{aligned} & 61 \\ & 22 \\ & 18 \end{aligned}$	$\begin{aligned} & 185 \\ & 37 \\ & 31 \end{aligned}$		$\begin{aligned} & 230 \\ & 46 \\ & 39 \end{aligned}$		$\begin{array}{\|l} \hline 280 \\ 56 \\ 48 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 7
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay S_{n} to \bar{Y}		$\begin{aligned} & \hline 61 \\ & 22 \\ & 18 \end{aligned}$	$\begin{array}{\|l\|} \hline 205 \\ 41 \\ 35 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 255 \\ 51 \\ 43 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 310 \\ 62 \\ 53 \\ \hline \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 7
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{E} to Y		$\begin{aligned} & \hline 41 \\ & 15 \\ & 12 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 125 \\ 25 \\ 21 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 155 \\ 31 \\ 26 \\ \hline \end{array}$		$\begin{array}{\|l\|l\|} \hline 190 \\ 38 \\ 32 \\ \hline \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 7
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{E}}$ to $\overline{\mathrm{Y}}$		$\begin{aligned} & 47 \\ & 17 \\ & 14 \end{aligned}$	$\begin{array}{\|l\|} \hline 145 \\ 29 \\ 25 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 180 \\ 36 \\ 31 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 220 \\ 44 \\ 38 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 7
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		19 7 6	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$		$\begin{array}{\|l\|} \hline 110 \\ 22 \\ 19 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Figs 6 and 7

8-input multiplexer

74HC/HCT151

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
ICC category: MSI

Note to HCT types

The value of additional quiescent supply current $\left(\Delta \mathrm{I}_{\mathrm{CC}}\right)$ for a unit load of 1 is given in the family specifications. To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
I_{n}	0.45
S_{n}	1.50
\bar{E}	0.30

AC CHARACTERISTICS FOR 74HCT

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HCT								$V_{c c}$ (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay I_{n} to Y		22	38		48		57	ns	4.5	Fig. 6
tphL $/$ tpLH	propagation delay I_{n} to \bar{Y}		22	38		48		57	ns	4.5	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay S_{n} to Y		23	41		51		62	ns	4.5	Fig. 7
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay S_{n} to \bar{Y}		25	43		54		65	ns	4.5	Fig. 7
$\mathrm{tPHL}^{\text {/ }}$ PLL	propagation delay \bar{E} to Y		16	29		36		44	ns	4.5	Fig. 7
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{E}}$ to $\overline{\mathrm{Y}}$		21	36		45		54	ns	4.5	Fig. 7
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7

AC WAVEFORMS

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.
$\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 6 Waveforms showing the multiplexer input $\left(I_{n}\right)$ to outputs $(\mathrm{Y}$ and $\overline{\mathrm{Y}})$ propagation delays and the output transition times.

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.
$\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 7 Waveforms showing the select input $\left(S_{n}\right)$ and enable input $(\overline{\mathrm{E}})$ to outputs $(\mathrm{Y}$ and $\overline{\mathrm{Y}})$ propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

