HESTORE.HU

EN: This Datasheet is presented by the manufacturer.
Please visit our website for pricing and availability at www.hestore.hu.

Absolute Maximum Ratings(Note 1)

 (Note 2)V_{DD} Supply Voltage
$\mathrm{V}_{\text {IN }}$ Input Voltage
T_{S} Storage Temperature Range
Power Dissipation (P_{D})
Dual-In-Line
Small Outline
Lead Temperature
(Soldering, 10 seconds)

Recommended Operating

 Conditions (Note 2)| $V_{D D}$ Supply Voltage | 3 V to 15 V |
| :--- | ---: |
| $\mathrm{~V}_{\text {IN }}$ Input Voltage | 0 V to $\mathrm{V}_{\text {DD }}$ |
| T_{A} Operating Temperature Range | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| | |
| Note 1: "Absolute Maximum Ratings" are those values beyond which the | |
| safety of the device cannot be guaranteed. They are not meant to imply | |
| that the devices should be operated at these limits. The tables of "Recom- | |
| mended Operating Conditions" and "Electrical Characteristics" provide con- | |
| ditions for actual device operation. | |
| Note 2: $\mathrm{V}_{S S}=0 \mathrm{~V}$ unless otherwise specified. | |

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
$\overline{\mathrm{IDD}}$	Quiescent Device Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 0.25 \\ 0.5 \\ 1.0 \\ \hline \end{gathered}$		$\begin{aligned} & \hline 0.01 \\ & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.25 \\ 0.5 \\ 1.0 \\ \hline \end{gathered}$		$\begin{array}{r} 7.5 \\ 15 \\ 30 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Signal Inputs and Outputs										
$\mathrm{R}_{\text {ON }}$	"ON" Resistance	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to }\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) / 2 \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{SS}} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to }\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) / 2 \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\text {IS }}=4.75 \text { to } 5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IS}}=7.25 \text { to } 7.75 \mathrm{~V} \end{aligned}$		$\begin{gathered} 600 \\ 360 \\ \hline 1870 \\ 775 \end{gathered}$		$\begin{aligned} & 250 \\ & 200 \\ & \\ & 850 \\ & 400 \end{aligned}$	$\begin{array}{r} 660 \\ 400 \\ \\ \hline 2000 \\ 850 \end{array}$		$\begin{aligned} & 960 \\ & 600 \\ & \\ & 2600 \\ & 1230 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
$\triangle \mathrm{R}_{\text {ON }}$	Δ "ON" Resistance Between any 2 of 4 Switches (In Same Package)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to }\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) / 2 \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$				$\begin{aligned} & 15 \\ & 10 \end{aligned}$				$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
$\mathrm{I}_{\text {IS }}$	Input or Output Leakage Switch "OFF"	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { or } 15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OS}}=15 \mathrm{~V} \text { or } 0 \mathrm{~V} \end{aligned}$		± 50		± 0.1	± 50		± 500	nA

Control Inputs

$\mathrm{V}_{\text {ILC }}$	LOW Level Input Voltage	$\begin{aligned} & \mathrm{V}_{I S}=\mathrm{V}_{\mathrm{SS}} \text { and } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{DD}} \text { and } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{I}_{\mathrm{IS}}= \pm 10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.9 \\ & 0.9 \\ & 0.9 \end{aligned}$			$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.7 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IHC }}$	HIGH Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \text { (Note 3) and Table 1 } \end{aligned}$	$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$			$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
I_{IN}	Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{SS}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}} \geq \mathrm{V}_{\mathrm{IS}} \geq \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}} \geq \mathrm{V}_{\mathrm{C}} \geq \mathrm{V}_{\mathrm{SS}} \end{aligned}$		± 0.1		$\pm 10^{-5}$	± 0.1		± 1.0	$\mu \mathrm{A}$

AC Electrical Characteristics (Note 4) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
${ }_{\text {tPHL }}$, $\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Signal Input to Signal Output	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \text { (Figure 1) } \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 58 \\ & 27 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 100 \\ 50 \\ 40 \\ \hline \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Propagation Delay Time Control Input to Signal Output HIGH Impedance to Logical Level	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \text { (Figure 2, Figure 3) } \\ & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 20 \\ & 18 \\ & 17 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\overline{\text { tPHZ } \text {, tPLZ }}$	Propagation Delay Time Control Input to Signal Output Logical Level to HIGH Impedance Sine Wave Distortion	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text {, (Figure 2, Figure 3) } \\ & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{IS}}=5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}, \mathrm{f}} \mathrm{f}=1 \mathrm{kHz}, \\ & \text { (Figure 4) } \end{aligned}$		$\begin{aligned} & 15 \\ & 11 \\ & 10 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \\ & 22 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \% \end{aligned}$
	Frequency Response - Switch "ON" (Frequency at -3 dB) Feedthrough — Switch "OFF" (Frequency at -50 dB) Crosstalk Between Any Two Switches (Frequency at-50 dB) Crosstalk; Control Input to Signal Output Maximum Control Input	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{IS}}=5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \end{aligned}$ $20 \log _{10} \mathrm{~V}_{\mathrm{OS}} / \mathrm{V}_{\mathrm{OS}}(1 \mathrm{kHz})-\mathrm{dB},$ (Figure 4) $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{I S}=5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \end{aligned}$ $20 \log _{10}\left(V_{\mathrm{OS}} / \mathrm{V}_{\text {IS }}\right)=-50 \mathrm{~dB}$, (Figure 4) $\begin{aligned} & V_{D D}=V_{C(A)}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{C}(\mathrm{~B})}=-5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \mathrm{~V}_{\text {IS(A) }}=5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & 20 \log _{10}\left(\mathrm{~V}_{\mathrm{OS}(\mathrm{~B})} / \mathrm{V}_{\mathrm{OS}(\mathrm{~A})}\right)=-50 \mathrm{~dB}, \end{aligned}$ (Figure 5) $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{IN}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \text { Square Wave, } \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}(\text { Figure } 6) \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \text { (Figure 7) } \\ & \mathrm{V}_{\mathrm{OS}(\mathrm{f})}=1 / 2 \mathrm{~V}_{\mathrm{OS}}(1 \mathrm{kHz}) \\ & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		0.9 150 6.5 8.0 9.0		MHz MHz MHz $m V_{\text {P-P }}$ MHz MHz MHz
$\mathrm{C}_{\text {IS }}$	Signal Input Capacitance			4		pF
$\mathrm{C}_{\text {OS }}$	Signal Output Capacitance	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		4		pF
$\mathrm{C}_{\text {IOS }}$	Feedthrough Capacitance	$\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V}$		0.2		pF
$\mathrm{C}_{\text {IN }}$	Control Input Capacitance			5	7.5	pF
Note 4: AC Parameters are guaranteed by DC correlated testing. Note 5: These devices should not be connected to circuits with the power "ON". Note 6: In all cases, there is approximately 5 pF of probe and jig capacitance on the output; however, this capacitance is included in C_{L} wherever it is specified. Note 7: $\mathrm{V}_{\text {IS }}$ is the voltage at the in/out pin and V_{OS} is the voltage at the out in pin. V_{C} is the voltage at the control input.						

FIGURE 4. Sine Wave Distortion, Frequency Response and Feedthrough
AC Test Circuits and Switching Time Waveforms (Continued)

FIGURE 5. Crosstalk Between Any Two Switches

Typical Performance Characteristics

'ON' Resistance Temperature Variation for $V_{D D}-V_{S S}=10 V$

'ON' Resistance Temperature Variation for $V_{D D}-V_{S S}=15 \mathrm{~V}$

Typical Applications

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
