

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at www.hestore.hu.

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT934-bit binary ripple counter

Product specification
File under Integrated Circuits, IC06

December 1990

4-bit binary ripple counter

74HC/HCT93

FEATURES

- · Various counting modes
- Asynchronous master reset
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT93 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT93 are 4-bit binary ripple counters. The devices consist of four master-slave flip-flops internally connected to provide a

divide-by-two section and a divide-by-eight section. Each section has a separate clock input (\overline{CP}_0 and \overline{CP}_1) to initiate state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q_n outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes.

A gated AND asynchronous master reset (MR₁ and MR₂) is provided which overrides both clocks and resets (clears) all flip-flops.

Since the output from the divide-by-two section is not internally connected to the succeeding stages,

the device may be operated in various counting modes. In a 4-bit ripple counter the output Q_0 must be connected externally to input \overline{CP}_1 . The input count pulses are applied to clock input \overline{CP}_0 . Simultaneous frequency divisions of 2, 4, 8 and 16 are performed at the Q_0 , Q_1 , Q_2 and Q_3 outputs as shown in the function table. As a 3-bit ripple counter the input count pulses are applied to input \overline{CP} .

Simultaneous frequency divisions of 2, 4 and 8 are available at the Q_1 , Q_2 and Q_3 outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STIVIBUL	PARAMETER	CONDITIONS	НС	1.5	ONIT
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_0 to Q_0	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	12	15	ns
f _{max}	maximum clock frequency	$C_L = 15 \text{pr}, \text{V}_{CC} = 5 \text{V}$	100	77	MHz
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	22	22	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

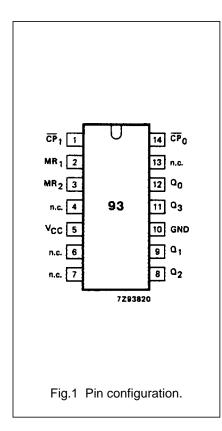
f_i = input frequency in MHz; f_o = output frequency in MHz

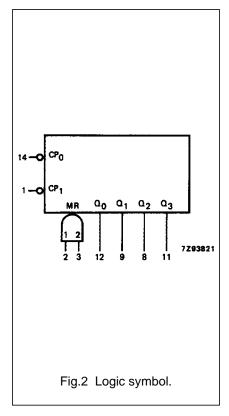
$$\sum (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$$

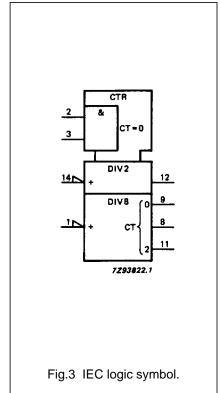
C_L = output load capacitance in pF; V_{CC} = supply voltage in V

2. For HC the condition is $V_1 = GND$ to V_{CC} ; for HCT the condition is $V_1 = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

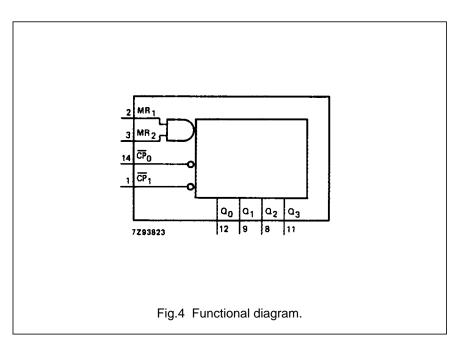

See "74HC/HCT/HCU/HCMOS Logic Package Information".

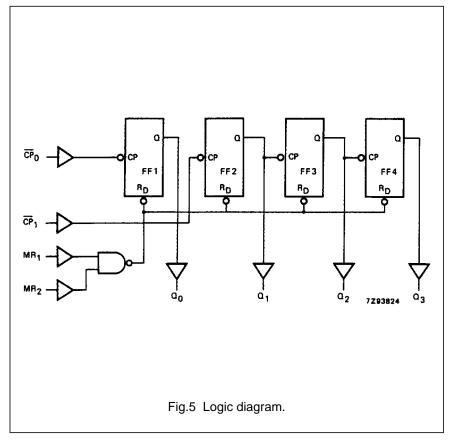

4-bit binary ripple counter


74HC/HCT93

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	CP ₁	clock input 2 nd , 3 rd and 4 th section (HIGH-to-LOW, edge-triggered)
2, 3	MR ₁ , MR ₂	asynchronous master reset (active HIGH)
4, 6, 7, 13	n.c.	not connected
5	V _{CC}	positive supply voltage
10	GND	ground (0 V)
12, 9, 8, 11	Q ₀ to Q ₃	flip-flop outputs
14	CP₀	clock input 1st section (HIGH-to-LOW, edge-triggered)





4-bit binary ripple counter

74HC/HCT93

FUNCTION TABLE

COUNT		OUTI	PUTS	
COUNT	Q_0	Q ₁	Q ₂	Q ₃
0 1 2 3	L H L H	L H H	L L L	L L L
4 5 6 7	L H L H	L H H	H H H	L L L
8 9 10 11	L H L	L H H	L L L	H H H
12 13 14 15	L H L H	L H H	H H H	H H H

Notes

1. Output Q_0 connected to \overline{CP}_1 . H = HIGH voltage levelL = LOW voltage level

MODE SELECTION

1	SET UTS		OUTP	UTS					
MR ₁	MR ₂	Q_0	Q ₁	Q ₂	Q_3				
Н	Н	L	L	L	L				
L	H	count							
Ľ	L	count count							

Philips Semiconductors Product specification

4-bit binary ripple counter

74HC/HCT93

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

			T _{amb} (°C)							TEST CONDITIONS	
SYMBOL	DADAMETED				74HC	;					
	PARAMETER		+25		-40	to +85	-40 to	o +125	UNII	UNIT V _{CC} WAVE	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(,,	
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_0 to Q_0		41 15 12	125 25 21		155 31 26		190 38 32	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay CP ₁ to Q ₁		49 16 13	135 27 23		170 34 29		205 41 35	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_1 to Q_2		61 22 18	185 37 31		230 46 39		280 56 48	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay $\overline{\text{CP}}_1$ to \mathbb{Q}_3		80 29 23	245 49 42		305 61 52		370 71 63	ns	2.0 4.5 6.0	Fig.6
t _{PHL}	propagation delay MR _n to Q _n		50 18 14	155 31 26		195 39 33		235 47 40	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6
t _{rem}	removal time MR_n to \overline{CP}_0 , \overline{CP}_1	50 10 9	8 3 2		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.7
t _W	pulse width $\overline{CP}_0, \overline{CP}_1$	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6
t _W	master reset pulse width MR _n	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7
f _{max}	maximum clock pulse frequency $\overline{CP_0}$, $\overline{CP_1}$	6.0 30 35	30 91 108		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.6

Philips Semiconductors Product specification

4-bit binary ripple counter

74HC/HCT93

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

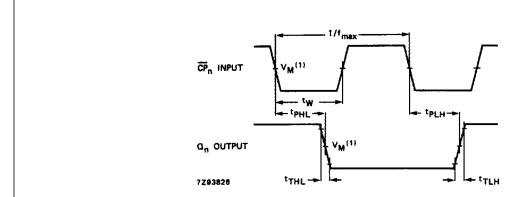
Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$\overline{CP}_0, \overline{CP}_1$	0.60
MR _n	0.40

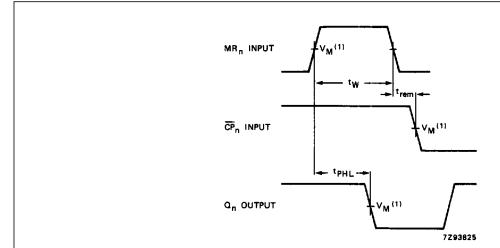
AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$


				•	T _{amb} (°	C)				TEST CONDITIONS	
SYMBOL	DADAMETED				74HC	Т					
	PARAMETER		+25		-40	to +85	-40 to	o +125	UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_0 to Q_0		18	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay CP ₁ to Q ₁		18	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay CP ₁ to Q ₂		24	46		58		69	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay CP ₁ to Q ₃		30	58		73		87	ns	4.5	Fig.6
t _{PHL}	propagation delay MR _n to Q _n		17	33		41		50	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6
t _{rem}	removal time MR _n to $\overline{\text{CP}}_0$, $\overline{\text{CP}}_1$	10	3		13		15		ns	4.5	Fig.7
t _W	pulse width \overline{CP}_0 , \overline{CP}_1	16	7		20		24		ns	4.5	Fig.6
t _W	master reset pulse width MR _n	16	5		20		24		ns	4.5	Fig.7
f _{max}	maximum clock pulse frequency \overline{CP}_0 , \overline{CP}_1	30	70		24		20		MHz	4.5	Fig.6

Philips Semiconductors Product specification

4-bit binary ripple counter


74HC/HCT93

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.6 Waveforms showing the clock (\overline{CP}_n) to output (Q_n) propagation delays, the clock pulse width, output transition times and the maximum clock pulse frequency.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.7 Waveforms showing the master reset (MR_n) pulse width, the master reset to output (Q_n) propagation delays and the master reset to clock (\overline{CP}_n) removal time.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".