HESTORE.HU

EN: This Datasheet is presented by the manufacturer.
Please visit our website for pricing and availability at www.hestore.hu.

FEATURES
44 V Supply Maximum Ratings
V_{sS} to V_{DD} Analog Signal Range
Low On Resistance (<35 Ω)
Ultralow Power Dissipation ($<35 \mu \mathrm{~W}$)
Fast Switching Times
$t_{\text {ON }}$ (160 ns max)
$t_{\text {off }}$ (100 ns max)
Break-Before-Make Switching Action
Plug-In Replacement for DG417

APPLICATIONS

Precision Test Equipment
Precision Instrumentation
Battery Powered Systems
Sample Hold Systems

GENERAL DESCRIPTION

The ADG417 is a monolithic CMOS SPST switch. This switch is designed on an enhanced LC 2 MOS process that provides low power dissipation yet gives high switching speed, low on resistance and low leakage currents.
The on resistance profile of the ADG417 is very flat over the full analog input range ensuring excellent linearity and low distortion. The part also exhibits high switching speed and high signal bandwidth. CMOS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.
The ADG417 switch, which is turned ON with a logic low on the control input, conducts equally well in both directions when ON and has an input signal range that extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. The ADG417 exhibits break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital input.

REV. A

[^0]
FUNCTIONAL BLOCK DIAGRAM

SWITCH SHOWN FOR A LOGIC "1" INPUT

PRODUCT HIGHLIGHTS

1. Extended Signal Range

The ADG417 is fabricated on an enhanced LC 2 MOS process, giving an increased signal range that extends to the supply rails.
2. Ultralow Power Dissipation
3. Low R_{ON}
4. Single Supply Operation

For applications where the analog signal is unipolar, the ADG417 can be operated from a single rail power supply. The part is fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5 V .

[^1]
ADG417-SPECIFICATIONS
 Dual Supply ${ }^{1}\left(\mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted)

Parameter	B Version		T Version		Units	Test Conditions/Comments
		$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range R_{ON}	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 45 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ss}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 45 \end{aligned}$	V Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 12.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage I_{D} (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \\ & \pm 30 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 15.5 \mathrm{~V} ; \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 15.5 \mathrm{~V}$ Test Circuit 2 $V_{S}=V_{D}= \pm 15.5 \mathrm{~V} ;$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Charge Injection OFF Isolation C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 100 \\ & 160 \\ & 60 \\ & 100 \\ & 7 \\ & 80 \\ & 8 \\ & 6 \\ & 6 \\ & 55 \end{aligned}$	200 150	$\begin{aligned} & 100 \\ & 145 \\ & 60 \\ & 100 \\ & 7 \\ & 80 \\ & 8 \\ & 6 \\ & 6 \\ & 55 \end{aligned}$	200 150	ns typ ns max ns typ ns max pC typ dB typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \mathrm{Test} \mathrm{Circuit} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { Test Circuit } 4 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} ; \text { Test Circuit } 5 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz} ; \end{aligned}$ Test Circuit 6
POWER REQUIREMENTS I_{DD} I_{SS} I_{L}	$\begin{aligned} & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \end{aligned}$	2.5 2.5 2.5	$\begin{aligned} & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$ $\mathrm{V}_{\mathrm{L}}=+5.5 \mathrm{~V}$

NOTES

${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Version: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

Single Supply ${ }^{1}\left(\mathrm{~V}_{D D}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted)

Parameter	$$		$$		Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range R_{ON}	40	$0 \text { to } \mathrm{V}_{\mathrm{DD}}$ 60	40	$\begin{aligned} & 0 \text { to } V_{\mathrm{DD}} \\ & 70 \end{aligned}$	V Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=+3 \mathrm{~V},+8.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=+10.8 \mathrm{~V} \end{aligned}$
LEAKAGE CURRENT Source OFF Leakage $\mathrm{I}_{\mathrm{S}}(\mathrm{OFF})$ Drain OFF Leakage $\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \\ & \pm 30 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=12.2 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 12.2 \mathrm{~V} ; \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=12.2 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 12.2 \mathrm{~V} ;$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=12.2 \mathrm{~V} / 1 \mathrm{~V} ;$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Charge Injection OFF Isolation C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 180 \\ & 85 \\ & 11 \\ & 80 \\ & \\ & 13 \\ & 13 \\ & 65 \end{aligned}$	250 110	$\begin{aligned} & 180 \\ & 85 \\ & 11 \\ & 80 \\ & \\ & 13 \\ & 13 \\ & 65 \end{aligned}$	250 110	ns max ns max pC typ dB typ pF typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=+8 \mathrm{~V}$; Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=+8 \mathrm{~V}$; Test Circuit 4 $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$, $\mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}$; Test Circuit 5 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$; Test Circuit 6
POWER REQUIREMENTS I_{DD} I_{L}	$\begin{aligned} & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=+5.5 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Version: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

Table I. Truth Table

Logic	Switch Condition
0	ON
1	OFF

ORDERING GUIDE

Model	Temperature Range	Package Options ${ }^{\star}$
ADG417BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-8$
ADG417BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO-8

$\star \mathrm{N}=$ Plastic DIP, SO $=0.15^{\prime \prime}$ Small Outline IC (SOIC).

PIN CONFIGURATION DIP/SOIC

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Plastic Package, Power Dissipation 400 mW
$\theta_{\mathrm{J} A}$, Thermal Impedance $100^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec) $+260^{\circ} \mathrm{C}$
SOIC Package, Power Dissipation 400 mW
θ_{J}, Thermal Impedance $155^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering
Vapor Phase (60 sec) $+215^{\circ} \mathrm{C}$
Infrared (15 sec) $+220^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG417 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TERMINOLOGY

$V_{D D}$
$\mathrm{V}_{\text {SS }}$

GND
S

D

IN
R_{ON}
I_{S} (OFF)
I_{D} (OFF)
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$
may be connected to GND.

Most positive power supply potential. Most negative power supply potential in dual supplies. In single supply applications, it

Logic power supply (+5 V).
Ground (0 V) reference.
Source terminal. May be an input or an output.
Drain terminal. May be an input or an output.
Logic control input.
Ohmic resistance between D and S. Source leakage current with the switch "OFF."
Drain leakage current with the switch "OFF."
Channel leakage current with the switch "ON."
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$
C_{S} (OFF)
C_{D} (OFF)
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$
t_{ON}
$\mathrm{t}_{\text {OFF }}$
$\mathrm{V}_{\text {INL }}$
$\mathrm{V}_{\text {INH }}$
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\mathrm{INH}}\right)$
Charge Injection

Off Isolation
I_{DD}
I_{SS}
I_{L}

Analog voltage on terminals D, S.
"OFF" switch source capacitance.
"OFF" switch drain capacitance.
"ON" switch capacitance.
Delay between applying the digital control input and the output switching on. Delay between applying the digital control input and the output switching off.
Maximum input voltage for logic " 0 ."
Minimum input voltage for logic " 1. "
Input current of the digital input.
A measure of the glitch impulse transferred from the digital input to the analog output during switching.
A measure of unwanted signal coupling through an "OFF" channel.
Positive supply current.
Negative supply current.
Logic supply current.

Typical Performance Characteristics-ADG417

Figure 1. $R_{\text {ON }}$ as a Function of $V_{D}\left(V_{S}\right)$: Dual Supply Voltage

Figure 2. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 3. Leakage Currents as a Function of $V_{S}\left(V_{D}\right)$

Figure 4. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$: Single Supply Voltage

Figure 5. $R_{\text {ON }}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 6. Leakage Currents as a Function of $V_{S}\left(V_{D}\right)$

Figure 7. Supply Current vs. Input Switching Frequency

Figure 8. Switching Time vs. Power Supply

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Charge Injection

Test Circuit 6. Off Isolation

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Lead Plastic DIP (N-8)

8-Lead SOIC (SO-8)
(Narrow Body)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

