HESTORE.HU

EN: This Datasheet is presented by the manufacturer.
Please visit our website for pricing and availability at www.hestore.hu.

ANALOG DEVICES

FEATURES

True rms-to-dc conversion Laser trimmed to high accuracy
0.2\% maximum error (AD536AK)
0.5\% maximum error (AD536AJ)
Wide response capability
Computes rms of ac and dc signals
450 kHz bandwidth: V rms > $\mathbf{1 0 0 ~ m V}$
2 MHz bandwidth: V rms > 1 V
Signal crest factor of 7 for $\mathbf{1 \%}$ error
$d B$ output with 60 dB range
Low power: 1.2 mA quiescent current
Single or dual supply operation
Monolithic integrated circuit
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation (AD536AS)
\section*{GENERAL DESCRIPTION}

The AD536A is a complete monolithic integrated circuit that performs true rms-to-dc conversion. It offers performance comparable or superior to that of hybrid or modular units costing much more. The AD536A directly computes the true rms value of any complex input waveform containing ac and dc components. A crest factor compensation scheme allows measurements with 1% error at crest factors up to 7 . The wide bandwidth of the device extends the measurement capability to 300 kHz with less than 3 dB errors, for signal levels greater than 100 mV .

An important feature of the AD536A, not previously available in rms converters, is an auxiliary dB output pin. The logarithm of the rms output signal is brought out to a separate pin to allow the dB conversion, with a useful dynamic range of 60 dB . Using an externally supplied reference current, the 0 dB level can be conveniently set to correspond to any input level from 0.1 V to 2 V rms.

The AD536A is laser trimmed to minimize input and output offset voltage, to optimize positive and negative waveform symmetry (dc reversal error), and for full-scale accuracy at 7 V rms. As a result, no external trims are required to achieve the rated unit accuracy.

The input and output pins are fully protected. The input circuitry can take overload voltages well beyond the supply levels. Loss of supply voltage with the input connected to external circuitry does not cause the device to fail. The output is short-circuit protected.

Rev. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The AD536A is available in two accuracy grades (J and K) for commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ applications, and one grade (S) rated for the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ extended range. The AD536AK offers a maximum total error of $\pm 2 \mathrm{mV} \pm 0.2 \%$ of reading while the AD536AJ and AD536AS have maximum errors of $\pm 5 \mathrm{mV} \pm 0.5 \%$ of reading. All three versions are available in a hermetically sealed 14-lead DIP or a 10-lead TO-100 metal can. The AD536AS is also available in a 20-terminal leadless hermetically sealed ceramic chip carrier.

The AD536A computes the true root-mean-square level of a complex ac (or ac plus dc) input signal and provides an equivalent dc output level. The true rms value of a waveform is a more useful quantity than the average rectified value because it relates directly to the power of the signal. The rms value of a statistical signal also relates to its standard deviation.

An external capacitor is required to perform measurements to the fully specified accuracy. The value of this capacitor determines the low frequency ac accuracy, ripple amplitude, and settling time.

The AD536A operates equally well from split supplies or a single supply with total supply levels from 5 V to 36 V . With one milliampere quiescent supply current, the device is well suited for a wide variety of remote controllers and batterypowered instruments.

AD536A

TABLE OF CONTENTS

Features 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Absolute Maximum Ratings. 5
ESD Caution 5
Pin Configurations and Function Descriptions 6
Applications 8
Typical Connections 8
REVISION HISTORY
3/06-Rev. B to Rev. C
Updated Format

\qquad
Universal
Changed Product Description to General Description 1
Changes to General Description 1
Changes to Table 1 3
Changes to Table 2 5
Added Pin Configurations and Function Descriptions 6
Changed Standard Connection to Typical Connections. 8
Changed Single Supply Connection to Single Supply Operation. 9
Changes to Connections for dB Operation. 11
Changes to Figure 17 12
Updated Outline Dimensions 14
Changes to Ordering Guide 15
6/99—Rev. A to Rev. B
Optional External Trims For High Accuracy 8
Single Supply Operation 9
Choosing the Averaging Time Constant 9
Theory of Operation 11
Connections for dB Operation 11
Frequency Response 12
AC Measurement Accuracy and Crest Factor 12
Outline Dimensions 14
Ordering Guide 15

SPECIFICATIONS

$@+25^{\circ} \mathrm{C}$ and $\pm 15 \mathrm{~V} \mathrm{dc}$, unless otherwise noted.
Table 1.

AD536A

Parameter	AD536AJ			AD536AK			AD536AS			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
lout TERMINAL	40			40			40			$\mu \mathrm{A} / \mathrm{V}$ rms \% k
Iout Scale Factor										
lout Scale Factor Tolerance	20	± 10	± 20	20	± 10	± 20	20	± 10	$\begin{aligned} & \pm 20 \\ & 30 \end{aligned}$	
Output Resistance		25	30		25	30		25		
Voltage Compliance		$\begin{aligned} & -V_{s} \text { to } \\ & \left(+V_{s}-2.5 \mathrm{~V}\right) \end{aligned}$			$\begin{aligned} & -V_{s} \text { to } \\ & \left(+V_{s}-2.5 \mathrm{~V}\right) \end{aligned}$			$\begin{aligned} & -V_{s} \text { to } \\ & \left(+V_{s}-2.5 \mathrm{~V}\right) \end{aligned}$		V
BUFFER AMPLIFIER										
Input and Output Voltage Range	$\begin{aligned} & -V_{s} \text { to } \\ & \left(+V_{s}-2.5 \mathrm{~V}\right) \end{aligned}$			$\begin{aligned} & -V_{s} \text { to } \\ & \left(+V_{s}-2.5 \mathrm{~V}\right) \end{aligned}$			$\begin{aligned} & -V_{s} \text { to } \\ & \left(+V_{s}-2.5 \mathrm{~V}\right) \end{aligned}$			V
Input Offset Voltage, $\mathrm{R}_{\mathrm{s}}=25 \mathrm{k}$		± 0.5	± 4		± 0.5	± 4		± 0.5	± 4	mV
Input Bias Current		20	60		20	60		20	60	nA
Input Resistance		10^{8}			10^{8}			10^{8}		Ω
Output Current	$\begin{aligned} & (+5 \mathrm{~mA} \\ & -130 \mu \mathrm{~A}) \end{aligned}$			$\begin{aligned} & (+5 \mathrm{~mA} \\ & -130 \mu \mathrm{~A}) \end{aligned}$			$\begin{aligned} & (+5 \mathrm{~mA} \\ & -130 \mu \mathrm{~A}) \end{aligned}$			
Short-Circuit Current	20				20			20		mA
Output Resistance			0.5			0.5			0.5	Ω
Small Signal Bandwidth	1			1			1			MHz
Slew Rate ${ }^{4}$	5			5			5			V/ $/ \mathrm{s}$
POWER SUPPLY										
Voltage Rated Performance	$\pm 3.0 \pm 15$			± 15			± 15			V
Dual Supply			± 18	± 3.0		± 18	± 3.0		± 18	V
Single Supply	+5		+36	+5		+36	+5		+36	V
Quiescent Current										
Total $\mathrm{V}_{\text {s, }} 5 \mathrm{~V}$ to 36 V , $\mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {MAX }}$	1.2		2	1.2		2	1.2		2	mA
TEMPERATURE RANGE										
Rated Performance	0		+70	0		+70	-55		+125	${ }^{\circ} \mathrm{C}$
Storage	-55		+150	-55		+150	-55		+150	${ }^{\circ} \mathrm{C}$
NUMBER OF TRANSISTORS	65			65			65			

${ }^{1}$ Accuracy is specified for 0 V to 7 Vrms , dc or 1 kHz sine wave input with the AD536A connected as in the figure referenced.
${ }^{2}$ Error vs. crest factor is specified as an additional error for 1 V rms rectangular pulse input, pulse width $=200 \mu \mathrm{~s}$.
${ }^{3}$ Input voltages are expressed in volts rms, and error is percent of reading.
${ }^{4}$ With $2 \mathrm{k} \Omega$ external pull-down resistor.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	
\quad Dual Supply	$\pm 18 \mathrm{~V}$
\quad Single Supply	+36 V
Internal Power Dissipation	500 mW
Maximum Input Voltage	$\pm 25 \mathrm{~V}$ Peak
Buffer Maximum Input Voltage	$\pm \mathrm{V}_{\mathrm{s}}$
Maximum Input Voltage	$\pm 25 \mathrm{~V}$ Peak
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
\quad AD536AJ/AD536AK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
\quad AD536AS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering 60 seconds)	$300^{\circ} \mathrm{C}$
ESD Rating	1000 V
Thermal Resistance $\theta_{\mathrm{JA}}{ }^{1}$	
\quad 10-Lead Header	$150^{\circ} \mathrm{C} / \mathrm{W}$
20-Lead LCC	$95^{\circ} \mathrm{C} / \mathrm{W}$
14-Lead Side-Brazed CERDIP	$95^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1} \theta_{\mathrm{JA}}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Figure 2. Die Dimensions and Pad Layout Dimensions shown in inches and (millimeters)

AD536A

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. D-14 and Q-14 Packages Pin Configuration
Table 3. D-14 and Q-14 Packages Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VIN	Input Voltage
2	NC	No Connection
3	$-\mathrm{V}_{\mathrm{S}}$	Negative Supply Voltage
4	CAV^{2}	Averaging Capacitor
5	dB	Log (dB) Value of the RMS Output Voltage
6	BUF OUT	Buffer Output
7	BUF IN	Buffer Input
8	louT	RMS Output Current
9	RL 10	COM
10	NC	Load Resistor
11	NC	Common
12	NC	No Connection
13	$+V_{S}$	No Connection
14	No Connection	

Figure 4. H-10 Package Pin Configuration
Table 4. H-10 Package Pin Function Descriptions

Pin No.	Mnemonic	Description
1	R $_{\text {L }}$	Load Resistor
2	COM	Common
3	$+\mathrm{V}_{\mathrm{S}}$	Positive Supply Voltage
4	$\mathrm{~V}_{\text {IN }}$	Input Voltage
5	$-\mathrm{V}_{\text {S }}$	Negative Supply Voltage
6	CAV^{2}	Averaging Capacitor
7	dB	Log (dB) Value of the RMS Output Voltage
8	BUF OUT	Buffer Output
9	BUF IN	Buffer Input
10	lout	RMS Output Current

Figure 5. E-20 Package Pin Configuration
Table 5. E-20 Package Pin Function Description

Pin No.	Mnemonic	Description
1	NC	No Connection
2	VIN 2	NC
3	$-V_{S}$	No Connection
4	NC	Negative Supply Voltage
5	CAV 2	NC
6	dB	Averaging Capacitor
7	BUF OUT	No Connection
8	BUF IN	Log (dB) Value of the RMS Output Voltage
9	NC	Buffer Output
10	lout	Buffer Input
11	RL	No Connection
12	COM	RMS Output Current
13	NC	Load Resistor
14	NC	Common
15	NC	No Connection
16	NC	No Connection
17	NC	No Connection
18	+ Vo Connection	
19		No Connection
20		Positive Supply Voltage

APPLICATIONS

TYPICAL CONNECTIONS

The AD536A is simple to connect for the majority of high accuracy rms measurements, requiring only an external capacitor to set the averaging time constant. The standard connection is shown in Figure 6 through Figure 8. In this configuration, the AD536A measures the rms of the ac and dc level present at the input, but shows an error for low frequency input as a function of the filter capacitor, C_{AV}, as shown in Figure 12. Thus, if a $4 \mu \mathrm{~F}$ capacitor is used, the additional average error at 10 Hz is 0.1%; at 3 Hz , the additional average error is 1%.

The accuracy at higher frequencies is according to specification. To reject the dc input, add a capacitor in series with the input, as shown in Figure 10. Note that the capacitor must be nonpolar. If the AD536A supply rails contain a considerable amount of high frequency ripple, it is advisable to bypass both supply pins to ground with $0.1 \mu \mathrm{~F}$ ceramic capacitors, located as close to the device as possible.

Figure 6. TO-116 and Q-14 Standard RMS Connection

Figure 7. TO-100 Standard RMS Connection

Figure 8. LCC Standard RMS Connection
The input and output signal ranges are a function of the supply voltages; these ranges are shown in Figure 21 and Figure 22. The AD536A can also be used in an unbuffered voltage output mode by disconnecting the input to the buffer. The output then appears unbuffered across the $25 \mathrm{k} \Omega$ resistor. The buffer amplifier can then be used for other purposes. Further, the AD536A can be used in a current output mode by disconnecting the $25 \mathrm{k} \Omega$ resistor from ground. The output current is available at Pin 8 (Pin 10 on the $\mathrm{H}-10$ package) with a nominal scale of $40 \mu \mathrm{~A}$ per V rms input positive out.

OPTIONAL EXTERNAL TRIMS FOR HIGH ACCURACY

The accuracy and offset voltage of the AD536A is adjustable with external trims, as shown in Figure 9. R4 trims the offset. Note that the offset trim circuit adds 365Ω in series with the internal $25 \mathrm{k} \Omega$ resistor. This causes a 1.5% increase in scale factor, which compensated by R1. The scale factor adjustment range is $\pm 1.5 \%$.

The trimming procedure is as follows:

1. Ground the input signal, V_{IN}, and adjust R 4 to provide 0 V output from Pin 6. Alternatively, adjust R4 to provide the correct output with the lowest expected value of $V_{\text {IN }}$.
2. Connect the desired full-scale input level to V_{IN}, either dc or a calibrated ac signal (1 kHz is the optimum frequency).
3. Trim R1 to provide the correct output at Pin 6. For example, 1.000 V dc input provides 1.000 V dc output. A $\pm 1.000 \mathrm{~V}$ peak-to-peak sine wave should provide a 0.707 V dc output. Any residual errors are caused by device nonlinearity.

The major advantage of external trimming is to optimize device performance for a reduced signal range; the AD536A is internally trimmed for a 7 V rms full-scale range.

Figure 9. Optional External Gain and Output Offset Trims

SINGLE SUPPLY OPERATION

Dual power supplies are shown in Figure 6, Figure 7, Figure 8, and Figure 9. The AD536A may also be powered by a single supply greater than 5 V , as shown in Figure 10. When using the AD536A with a single supply, the differential input stage must be biased above ground, and the input must be ac coupled. Biasing the device between the supply and ground is simply a matter of connecting Pin 10 (COM, Pin 2 on the H10 package) to a resistor divider and bypassing the pin to ground. To minimize power consumption, the values of the resistors may be large as Pin 10 current is only $5 \mu \mathrm{~A}$.

AC input coupling requires only Capacitor C 2 . A dc return is not necessary because it is provided internally. C2 is selected for the proper low frequency break point with the input resistance of $16.7 \mathrm{k} \Omega$; for a cutoff at $10 \mathrm{~Hz}, \mathrm{C} 2$ should be $1 \mu \mathrm{~F}$. The signal ranges in this connection are slightly more restricted than in the dual supply connection. The input and output signal ranges are shown in Figure 21 and Figure 22. The load resistor, R_{L}, is necessary to provide output sink current.

Figure 10. Single Supply Connection

CHOOSING THE AVERAGING TIME CONSTANT

The AD536A computes the rms of both ac and dc signals. If the input is a slowly varying dc signal, the output of the AD536A tracks the input exactly.

At higher frequencies, the average output of the AD536A approaches the rms value of the input signal. The actual output of the AD536A differs from the ideal output by a dc (or average) error and some amount of ripple, as shown in Figure 11.

Figure 11. Typical Output Waveform for Sinusoidal Input
The dc error is dependent on the input signal frequency and the value of C_{Av}. Use Figure 12 to determine the minimum value of C_{AV}, which yields a given percent dc error above a given frequency using the standard rms connection.

The ac component of the output signal is the ripple. There are two ways to reduce the ripple. The first method involves using a large value of C_{Av}. Because the ripple is inversely proportional to C_{AV}, a tenfold increase in this capacitance affects a tenfold reduction in ripple.

When measuring waveforms with high crest factors, such as low duty cycle pulse trains, the averaging time constant should be at least 10 times the signal period. For example, a 100 Hz pulse rate requires a 100 ms time constant, which corresponds to a $4 \mu \mathrm{~F}$ capacitor (time constant $=25 \mathrm{~ms}$ per $\mu \mathrm{F}$).

AD536A

The primary disadvantage in using a large C_{AV} to remove ripple is that the settling time for a step change in input level is increased proportionately. Figure 12 illustrates that the relationship between $C_{A V}$ and 1% settling time is 115 ms for each microfarad of $C_{A V}$. The settling time is twice as great for decreasing signals as for increasing signals. The values in Figure 12 are for decreasing signals. Settling time also increases for low signal levels, as shown in Figure 13.

Figure 12. Error/Settling Time Graph for Use with the Standard RMS Connection (See Figure 6 Through Figure 8)

A better method to reduce output ripple is the use of a post filter. Figure 14 shows a suggested circuit. If a single-pole filter is used (C3 removed, R_{x} shorted), and C2 is approximately twice the value of C_{AV}, the ripple is reduced, as shown in Figure 15, and settling time is increased. For example, with $\mathrm{C}_{\mathrm{AV}}=1 \mu \mathrm{~F}$ and $\mathrm{C} 2=2.2 \mu \mathrm{~F}$, the ripple for a 60 Hz input is reduced from 10% of reading to approximately 0.3% of reading.

The settling time, however, is increased by approximately a factor of 3. Therefore, the values of C_{AV} and C 2 can be reduced to permit faster settling times while still providing substantial ripple reduction.

The two-pole post filter uses an active filter stage to provide even greater ripple reduction without substantially increasing the settling times over a circuit with a one-pole filter. The values of $\mathrm{C}_{\mathrm{AV}}, \mathrm{C} 2$, and C 3 can then be reduced to allow extremely fast settling times for a constant amount of ripple. Caution should be exercised in choosing the value of C_{AV}, because the dc error is dependent upon this value and is independent of the post filter.

For a more detailed explanation of these topics, refer to the RMS-to-DC Conversion Application Guide 2nd Edition, available from Analog Devices, Inc.

Figure 14. Two-Pole Post Filter

Figure 15. Performance Features of Various Filter Types (See Figure 7)

THEORY OF OPERATION

The AD536A embodies an implicit solution of the rms equation that overcomes the dynamic range as well as other limitations inherent in a straightforward computation of rms. The actual computation performed by the AD536A follows the equation

$$
V r m s=A v g \cdot\left[\frac{V_{I N}^{2}}{V r m s}\right]
$$

Figure 16 is a simplified schematic of the AD536A. Note that it is subdivided into four major sections: absolute value circuit (active rectifier), squarer/divider, current mirror, and buffer amplifier. The input voltage ($\mathrm{V}_{\text {IN }}$), which can be ac or dc, is converted to a unipolar current (I_{1}, by the active rectifier $\left(A_{1}, A_{2}\right) . I_{1}$ drives one input of the squarer/divider, which has the transfer function

$$
\mathrm{I}_{4}=\mathrm{I}^{2} / \mathrm{I}_{3}
$$

The output current, I_{4}, of the squarer/divider drives the current mirror through a low-pass filter formed by R1 and the externally connected capacitor, C_{Av}. If the $\mathrm{R} 1, \mathrm{C}_{\mathrm{AV}}$ time constant is much greater than the longest period of the input signal, then I_{4} is effectively averaged. The current mirror returns a current I_{3}, which equals Avg. [$\left.\mathrm{I}_{4}\right]$, back to the squarer/divider to complete the implicit rms computation. Thus

$$
I_{4}=A v g \cdot\left[I_{I}^{2} / I_{4}\right]=I_{I} \mathrm{rms}
$$

Figure 16. Simplified Schematic
The current mirror also produces the output current, Iout, which equals $2 \mathrm{I}_{4}$. Iout can be used directly or converted to a voltage with R2 and buffered by A4 to provide a low impedance
voltage output. The transfer function of the AD536A results in the following:

$$
V_{\text {OUT }}=2 R 2 \times \mathrm{I} \mathrm{rms}=V_{\text {IN }} r m s
$$

The dB output is derived from the emitter of Q3 because the voltage at this point is proportional to $-\log \mathrm{V}_{\mathrm{IN}}$. Emitter follower, Q5, buffers and level shifts this voltage, so that the dB output voltage is zero when the externally supplied emitter current ($\mathrm{I}_{\text {REF }}$) to Q5 approximates I_{3}.

CONNECTIONS FOR dB OPERATION

The logarithmic (or decibel) output of the AD536A is one of its most powerful features. The internal circuit computing dB works accurately over a 60 dB range. The connections for dB measurements are shown in Figure 17.

Select the 0 dB level by adjusting R1 for the proper 0 dB reference current (which is set to cancel the log output current from the squarer/divider at the desired 0 dB point). The external op amp provides a more convenient scale and allows compensation of the $+0.33 \% /{ }^{\circ} \mathrm{C}$ scale factor drift of the dB output pin.

The temperature compensating resistor, R 2 , is available online in several styles from Precision Resistor Corporation. The average temperature coefficients of R2 and R3 result in the +3300 ppm required to compensate the dB output. The linear rms output is available at Pin 8 on the DIP or Pin 10 on the header device with an output impedance of $25 \mathrm{k} \Omega$. Some applications require an additional buffer amplifier if this output is desired.

For dB calibration

1. Set $\mathrm{V}_{\mathrm{IN}}=1.00 \mathrm{~V}$ dc or 1.00 V rms.
2. Adjust R1 for dB out $=0.00 \mathrm{~V}$.
3. Set $\mathrm{V}_{\mathrm{IN}}=+0.1 \mathrm{~V}$ dc or 0.10 V rms .
4. Adjust R5 for dB out $=-2.00 \mathrm{~V}$.

Any other desired 0 dB reference level can be used by setting V_{IN} and adjusting R1, accordingly. Note that adjusting R5 for the proper gain automatically provides the correct temperature compensation.

AD536A

Figure 17. dB Connection

FREQUENCY RESPONSE

The AD536A utilizes a logarithmic circuit in performing the implicit rms computation. As with any \log circuit, bandwidth is proportional to signal level. The solid lines in the graph below represent the frequency response of the AD536A at input levels from 10 mV to 7 V rms . The dashed lines indicate the upper frequency limits for $1 \%, 10 \%$, and 3 dB of reading additional error. For example, note that a 1 V rms signal produces less than 1% of reading additional error up to 120 kHz . A 10 mV signal can be measured with 1% of reading additional error $(100 \mu \mathrm{~V})$ up to only 5 kHz .

Figure 18. High Frequency Response

AC MEASUREMENT ACCURACY AND CREST FACTOR

Crest factor is often overlooked when determining the accuracy of an ac measurement. The definition of crest factor is the ratio of the peak signal amplitude to the rms value of the signal ($\mathrm{CF}=\mathrm{V}_{\mathrm{P}} / \mathrm{Vrms}$). Most common waveforms, such as sine and triangle waves, have relatively low crest factors (<2). Waveforms that resemble low duty cycle pulse trains, such as those occurring in switching power supplies and SCR circuits, have high crest factors. For example, a rectangular pulse train with a 1% duty cycle has a crest factor of $10(\mathrm{CF}=1 \sqrt{ } \mathrm{n})$.

Figure 19 illustrates a curve of reading error for the AD536A for a 1 V rms input signal with crest factors from 1 to 11 . A rectangular pulse train (pulse width $100 \mu \mathrm{~s}$) was used for this test because it is the worst-case waveform for rms measurement (all of the energy is contained in the peaks). The duty cycle and peak amplitude were varied to produce crest factors from 1 to 11 while maintaining a constant 1 V rms input amplitude.

Figure 19. Error vs. Crest Factor

Figure 20. Error vs. Pulse Width Rectangular Pulse

Figure 21. Input and Output Voltage Ranges vs. Dual Supply

Figure 22. Input and Output Voltage Ranges vs. Single Supply

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 23. 14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP] (D-14)
Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 24. 20-Terminal Ceramic Leadless Chip Carrier [LCC] (E-20)
Dimensions shown in inches and (millimeter)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 25. 14-Lead Ceramic Dual In-Line Package [CERDIP]
(Q-14)
Dimensions shown in inches and (millimeters)

Figure 26. 10-Pin Metal Header Package [TO-100]
(H-10)
Dimensions shown in inches and (millimeters)
ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD536AJD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD536AKD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD536AJH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	10-Lead Metal Header Package [TO-100]	H-10
AD536AKH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	10-Lead Metal Header Package [TO-100]	H-10
AD536AJQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Lead Ceramic Dual In-Line Package [CERDIP]	Q-14
AD536AKQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Lead Ceramic Dual In-Line Package [CERDIP]	Q-14
AD536ASD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD536ASD/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD536ASE/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Terminal Ceramic Leadless Chip Carrier [LCC]	E-20
AD536ASH	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Metal Header Package [TO-100]	H-10
AD536ASH/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Metal Header Package [TO-100]	H-10
AD536ASCHIPS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Die	
5962-89805012A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Terminal Ceramic Leadless Chip Carrier [LCC]	E-20
5962-8980501CA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
5962-8980501IA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Metal Header Package [TO-100]	H-10

AD536A

NOTES

