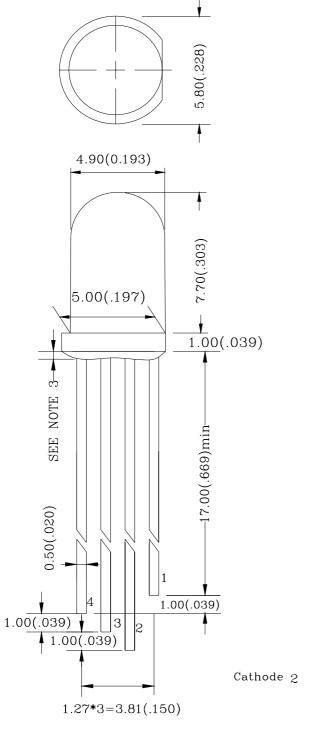


EN: This Datasheet is presented by the manufacturer.


Please visit our website for pricing and availability at www.hestore.hu.

540R2GBC-CC

REV:A/0

PACKAGE DIMENSIONS

Note:

- 1.All Dimensions are in millimeters.
- 2.Tolerance is ±0.25mm(0.010 ")
 Unless otherwise specified.
- 3.Protruded resin under flange is 1.5mm(0.059 ") max.
- 4.Lead spacing is measured where the leads emerge from the package.
- 5. Specification are subject to change without notice
- 6.highlight <-500V the led can withstand the max static level when assembling or operation.</p>

G5

B

R

A

4

DRAWING NO.: DS-35-04-0636

DATE: 2005-10-19

Page:

540R2GBC-CC

REV:A/0

FEATURES

- * 5.0mm DIA LED LAMP
- * LOW POWER CONSUMPTION.
- * I.C. COMPATIBLE.
- * THREE CHIPS ARE MATCHED FOR UNIFORM LIGHT OUTPUT.
- * LONG LIFE-SOLIDSTATE RELIABILITY.
- * FULL COLOR AND HIGH CONTRAST LAMP

CHIP MATERIALS

* Dice Material: AlGaInP/GaAs & GaInN/GaN & GaInN/GaN

* Light Color : FULL COLOR(SUPER RED & ULTRA PURE GREEN & ULTRA BLUE)

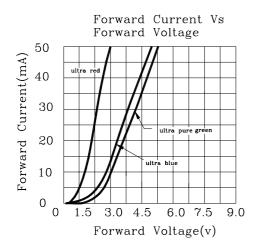
* Lens Color: WATER CLEAR

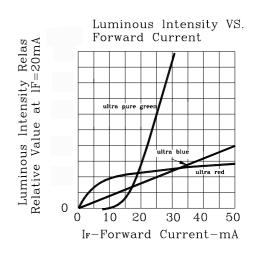
ABSOLUTE MAXIMUM RATING:(Ta=25°C)

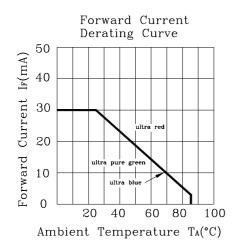
7.2.3.2.3.2.3.1.2.3.1.3.2.3.1.3.2.3.2.3.2					
SYMBOL	DESCRIPTION	ULTRA RED	ULTRA PURE GREEN	ULTRA BLUE	UNIT
PAD	Power Dissipation Per Chip 80 130 12		120	mW	
VR	Reverse Voltage Per Chip 5 5 5		V		
lF	Average Forward Current Per Chip	30	30	30	mA
IPF	Peak Forward Current Per Chip (Duty=0.1,1KHZ)		120	70	mA
-	Derating Linear From 25°C Per Chip	0.4	0.4	0.4	mA/°C
Topr	Operating Temperature Range	-25°C to 85°C			
Tstg	Storage Temperature Range -40°C to 85°C				
Lead Soldering Temperature { 1.6mm(0.063 inch) From Body } 260°C±5°C For 5 Seconds					

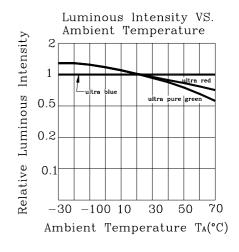
ELECTRO-OPTICAL CHARACTERISTICS:(Ta=25°C)

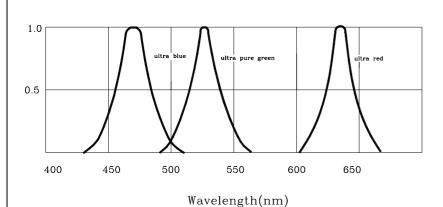
SYMBOL	PARAMETER	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
			Ultra Red		2.0	2.6	V
VF	Forward Voltage	IF=20m <i>P</i>	Ultra Pure Green		3.5	4.0	V
			Ultra Blue		3.5	4.0	V
lR	Reverse Current	VR=5V	Ultra Red			100	μΑ
			Ultra Pure Green			100	μΑ
			Ultra Blue			100	μΑ
λD	Dominant Wavelength	IF=20mA	Ultra Red		625		nm
			Ultra Pure Green		525		nm
			Ultra Blue		460		nm
Δλ	Spectral Line Half-Width	IF=20mA	Ultra Red		20		nm
			Ultra Pure Green		22		nm
			Ultra Blue		30		nm
			Ultra Red		40		deg
201/2	Half Intensity Angle	IF=20mA	Ultra Pure Green		40		deg
			Ultra Blue		40		deg
IV	Luminous Intensity IF=2	F=20mA	Ultra Red	1500		2100	mcd
			Ultra Pure Green	4200		5800	mcd
			Ultra Blue	1100		1500	mcd

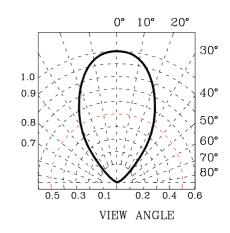

DRAWING NO.: DS-35-04-0636 DATE: 2005-10-19


Page: 2




540R2GBC-CC

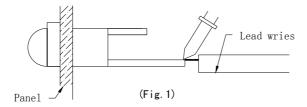

REV:A/0



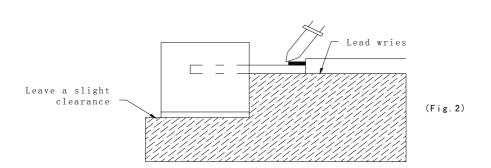
DRAWING NO.: DS-35-04-0636

DATE: 2005-10-19

Page:


540R2GBC-CC

REV:A/0

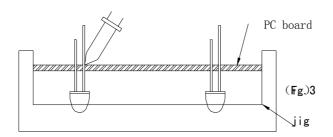

SOLDERING

METHOD	SOLDERING CONDITIONS	REMARK
DIP SOLDERING	Bath temperature: 260±5℃ Immersion time: with 5 sec	 Solder no closer than 3mm from the base of the package Using soldering flux," RESIN FLUX" is recommended.
SOLDERING IRON	Soldering iron: 30W or smaller Temperature at tip of iron: 260℃ or lower Soldering time: within 5 sec.	 During soldering, take care not to press the tip of iron against the lead. (To prevent heat from being transferred directly to the lead, hold the lead with a pair of tweezers while soldering

 When soldering the lead of LED in a condition that the package is fixed with a panel (See Fig.1), be careful not to stress the leads with iron tip.

2) When soldering wire to the lead, work with a Fig (See Fig.2) to avoid stressing the package.

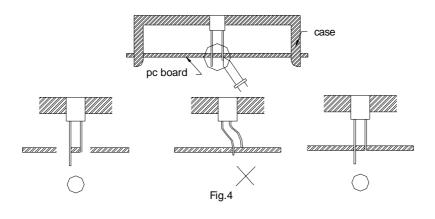
DRAWING NO.: DS-35-04-0636 DATE: 2005-10-19 Page: 4



540R2GBC-CC

REV:A/0

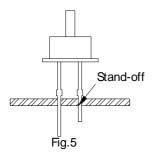
3) Similarly, when a jig is used to solder the LED to PC board, take care as much as possible to avoid steering the leads (See Fig.3).

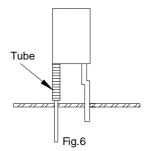

0

- 4) Repositioning after soldering should be avoided as much as possible. If inevitable, be sure to preserve the soldering conditions with irons stated above: select a best-suited method that assures the least stress to the LED.
- Lead cutting after soldering should be performed only after the LED temperature has returned to normal temperature.

•LED MOUNTING METHOD

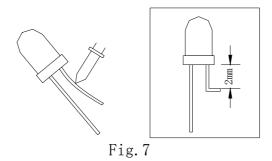
1) When mounting the LED by using a case, as shown Fig.4, ensure that the mounting holds on the PC board match the pitch of the leads correctly-tolerance of dimensions of the respective components including the LED should be taken into account especially when designing the case, PC board, etc. to prevent pitch misalignment between the leads and board holes, the diameter of the board holes should be slightly larger than the size of the lead. Alternatively, the shape of the holes should be made oval. (See Fig.4)

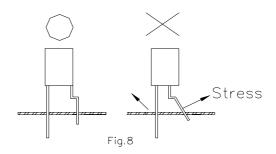

DRAWING NO. : DS-35-04-0636 DATE : 2005-10-19 Page : 5



540R2GBC-CC

REV:A / 0


2) Use LEDs with stand-off (Fig.5) or the tube or spacer made of resin (Fig.6) to position the LEDs.

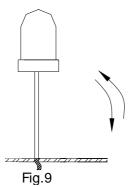


•FORMED LEAD

1) The lead should be bent at a point located at least 2mm away from the package. Bending should be performed with base fixed means of a jig or pliers (Fig.7)

- 2) Forming lead should be carried our prior to soldering and never during or after soldering.
- 3) Form the lead to ensure alignment between the leads and the hole on board, so that stress against the LED is prevented. (Fig.8)

DRAWING NO.: DS-35-04-0636 DATE: 2005-10-19 Page: 6


540R2GBC-CC

REV:A/0

•LEAD STRENGTH

1) Bend strength

Do not bend the lead more than twice. (Fig.9)

Tensile strength (@Room Temperature)
 If the force is 1kg or less, there will be no problem. (Fig.10)

HANDLING PRECAUTIONS

Although rigid against vibration, the LEDs may damaged or scratched if dropped. So take care when handling.

•CHEMICAL RESISTANCE

- 1) Avoid exposure to chemicals as it may attack the LED surface and cause discoloration.
- 2) When washing is required, refer to the following table for the proper chemical to be sued. (Immersion time: within 3 minutes at room temperature.)

SOLVENT	ADAPTABILITY
Freon TE	\odot
Chlorothene	X
Isopropyl Alcohol	\odot
Thinner	X
Acetone	X
Trichloroethylene	X

 \odot --Usable \times --Do not use.

NOTE: Influences of ultrasonic cleaning of the LED resin body differ depending on such factors as the oscillator output, size of the PC board and the way in which the LED is mounted.

Therefore, ultrasonic cleaning should only be performed after confirming there is no problem by

DRAWING NO. : DS-35-04-0636 DATE : 2005-10-19 Page : 7

540R2GBC-CC

REV:A/0

Experiment Item:

Itom	Test Condition			
Item	Lamp & IR	Reference Standard		
OPERATION LIFE	Ta: 25±5°C IF= 20mA RH: <=60%RH ① DYNAMIC:100mA 1ms 1/10 duty ② STATIC STATE: IF=20mA	MIL-STD-750: 1026 MIL-STD-883: 1005 JIS C 7021: B-1		
HIGH TEMPERATURE HIGH HUMIDITY STORAGE	Ta: $65^{\circ}\mathbb{C}\pm5^{\circ}\mathbb{C}$ RH: $90\sim95\%$ RH TEST TIME: 240HRS ±2 HRS	MIL-STD-202: 103B JIS C 7021: B-1		
TEMPERATURE CYCLING	105° C \sim 25° C \sim -55° C \sim 25° C \sim 30 min 5min 30min 5min 10CYCLES	MIL-STD-202: 107D MIL-STD-750: 1051 MIL-STD-883: 1010 JIS C 7021: A-4		
THERMAL SHOCK	105°C±5°C ∼-55°C±5°C 10min 10min 10CYCLES	MIL-STD-202: 107D MIL-STD-750: 1051 MIL-SYD-883: 1011		
SOLDER RESISTANCE	T,sol:260℃±5℃ DWELL TIME:10±lsec	MIL-STD-202 : 210A MIL-STD-750-2031 JIS C 7021 : A-1		
SOLDERABILITY	T,sol:230 $^\circ$ C $^\pm$ 5 $^\circ$ C DWELL TIME:5 $^\pm$ Isec	MIL-STD-202 : 208D MIL-STD-750 : 2026 MIL-STD-883 : 2003 JIS C 7021 : A-2		

DRAWING NO. : DS-35-04-0636 DATE : 2005-10-19 Page : 8