

EN: This Datasheet is presented by the manufacturer.

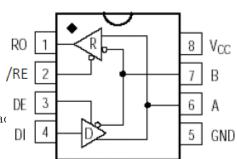
Please visit our website for pricing and availability at www.hestore.hu.

With fail-safe function (Fail-Safe), low power consumption, limited slew rate

RS-485 transceiver

product description

BL3085 is a 5V power supply, half-duplex RS-485 transceiver, the chip contains a driver and a receiver. The BL3085 uses a slew-rate-limited driver, which can significantly reduce EMI and reflections caused by improperly terminated cables, and achieve


Error-free data transmission up to 500kbps. The BL3085 has a built-in fail-safe circuit to ensure that the output of the receiver is in a logic high state when the input of the receiver is open or shorted.

BL3085 receiver is 1/8 unit load, allowing up to 256 transceivers to be connected to the bus to realize half-duplex communication. BL3085 I/O pins have \pm 15kV IEC 61000-4-2 contact discharge protection capability.

Product Features

- ➤ +5V working voltage
- > Built-in fail-safe circuit
- > Up to 500kbps transfer rate
- > Bus allows up to 256 transceivers
- \triangleright I/O pin ESD protection: \pm 15kV IEC 61000-4-2, contact
- ➤ SOP8 package

Block Diagram

Application field

- smart meter
- > Collection terminal
- industrial control
- > security monitor

Note: The chip version $^{\prime\prime}$ I47 $^{\prime\prime}$ is determined by the first three digits in the second row of the chip silkscreen

www.belling.com.cn Page- 1 - V1.1

Ordering information information

型号	封装	丝印
DI 2005/I47)	SOP8	BL3085
BL3085(I47)	SOF6	I47SSSSS

silk screen

Among them: "I47" is the chip version number

" SSSSS" represents the 4th to 8th digits of the card number

Pin definition

seri al numb er	name	function
1	RO	receiver output
2	/RE	Receiver output enable. RO output is valid when / RE is low level; RO is high impedance state when /RE is high level
3	DE	Driver output enable. The driver output is valid when DE is high level, and the output is high impedance state when DE is low level
4	DI	drive input
5	GND	grounding
6	А	Receiver non-inverting input and driver non-inverting output
7	В	Receiver inverting input and driver inverting output
8	V _{CC}	power supply

Driver Truth Table

ente r			outp ut		
/RE	DE	DI	А	В	
Х	1	1	1	0	

BL3085(I47)

Х	1	0	0	1	
0	0	x	High-Z	High-Z	
1	0	х	Shutdown (High-Z)		

Receiver Truth Table

	ente r			
/RE	DE	AB	RO	
0	X	>-50mV	1	
0	X	<-200mV	0	
0	X	open /short	1	
1	1	X	High-Z	
1	0	X	Shutdown (High-Z)	

Limit parameter

parameters	the symbol	limit value	unit
Operating Voltage	V _{CC}	+7	V
Control input voltage	/RE, DE	-0.3 to V _{CC} +0.3	V
Driver input voltage	DI	-0.3 to V _{CC} +0.3	V
Driver output voltage	A, B	±13	V
Receiver input voltage	A, B	±13	V
Receiver output voltage	RO	-0.3 to V _{CC} +0.3	V

temperature range

Specified service temperature	-40~+85 °C
Limit temperature	-55∼+125 ℃
storage temperature	-65~+150 ℃

www.belling.com.cn Page4 V1.1

DC Electrical Characteristics

(VCC=+5V \pm 5 % , TA = -40 $^{\circ}$ C $^{\sim}$ +85 $^{\circ}$ C, typical value at VCC = +5V , TA =25 $^{\circ}$ C) Note 1)

parameter	symbol	Tes Con	t ditions	minimu m value	typica 1 value	maximu m value	unit
Operating Voltage	Vcc			4.5		5.5	V
driver							
Differential driver output (no	V _{OD1}	Figure 1				V cc	V
load) Differential Driver Output	V _{OD2}	Figure 1	, R=27Ω	1.5			V
The magnitude of the differential output voltage Variation (Note 2	ΔV _{OD}	Figure 1	, R=27Ω			0.2	V
Driver Common Mode Output Voltage	VOC _	Figure 1	, R=27Ω	1.0		3.0	V
Amplitude variation of common mode voltage	ΔV oc	Figure 1	, R=27Ω			0.2	V
(Note 2) input high voltage	V	DE,DI,/RE		2.0			V
input low voltage	VIL	DE,DI,/RE		2.0		0.8	V
DI input hysteresis	V _{HYS}	DE=GND			100		mV
<pre>Input Current (A , B)</pre>	l IN4	V _{CC} =GND	V _{IN} =12V V _{IN} =-7V	-75		125	μΑ
Driver short circuit output current	I _{OSD}	or 5.25V A Pin Sho	rt to B Pin	-100		100	mA
receiver	ı	l			1		
Receiver Differential Threshold Voltage	VTH _	-7V ≤ VC	CM ≤ 12V _	-200	-125	-50	mV
Receiver Input Hysteresis	△ V TH				40		mV
Receiver output high voltage	V _{OH}	I _O =-8mA, 50mV	V _{ID} =-	4.0			V
Receiver output	V _{OL}	I _O =8mA,\	√ _{ID} =-			0.4	V

BL3085(I47)

low voltage		200mV					
Receiver Tri-State Output Current	QUR_					±1	μΑ
Receiver input impedance	R _{IN}	-7V ≤ VCM	≤ 12V _	96			ΚΩ
Receiver output short circuit current	OSR_	0V ≤ V ROS	≤ V cc	±7		±95	mA
supply current							
1			DE=V cc		350	600	μΑ
supply current	I _{CC}	/RE=DI= GND or vcc	DE=GND		370	600	μΑ
Standby Mode Supply Current	I _{SHDN}	DE=GND, /F DI=V _{CC} or G				10	μΑ

Note 1: All currents into the device are positive and all currents out of the device are negative; all voltages are to ground unless otherwise specified. Note 2: When DI input changes state, \triangle V op and \triangle V oc V op and V oc amount of change.

www.belling.com.cn Page6 V1.1

transmission characteristics

(VCC=+5V±5%, TA=-40 $^{\circ}\mathrm{C}$ $^{\sim}$ +85 $^{\circ}\mathrm{C}$, the typical value is VCC=+5V , TA = 25 $^{\circ}\mathrm{C}$)

parameter	symbol	cond itio	minimu m value	typica 1 value	maximu m value	unit
Driver input to output delay	wxya_ t _{DPHL}	Figures 3 and 5, R $_{DIFF}$ =54 Ω C $_{L1}$ =C $_{L2}$ =100pF		300	800	ns
Driver output delay difference Tophh - Tophh	tDSKEW -	Figures 3 and 5, R DIFF =54Ω C L1 =C L2 =100pF			100	ns
Driver Rise or Fall Time	t _{DR} ,t _{DF}	Figures 3 and 5, R DIFF = 54Ω C $_{L1}$ = C $_{L2}$ = 100 pF		420	900	ns
maximum rate	F _{MAX}		500			kbps
Driver Enable to Output High	wxya _	Figures 4 and 6, C _L =100pF S2 Closed			300	ns
Driver Enable to Input low level	wxya _	Figures 4 and 6, C _L =100pF S1 Closed			500	ns
drives the output low from the to off time	lm _w	Figures 4 and 6, C _L =15pF S1 Closed			900	ns
drives the output high from the to off time	wxya _	Figures 4 and 6, C _L =15pF S2 Closed			800	ns
Receiver input and output delay	t _{RPLH} tRPHL _	7 and 9, _ ; rise and fall time of VID ≦ 15ns		150	300	ns
T RPLH - T RPHL Difference between receiver input and output delay	t _{RSKD}	7 and 9 , _ ; rise and fall time of VID ≦ 15ns		10		ns

BL3085(I47)

Receiver Enable to Input	wxya _	Figures 2 and 8, C _{RL} =15pF S1 Closed	20	50	ns
out low		D: 0 10 0			
Receiver Enable to	wxya _	Figures 2 and 8, C _{RL} =15pF S2	20	50	ns
Input		Closed			
high					
receiver	lm _w	Figures 2 and 8 , C_{RL}	30	60	ns
outputs low	IIII W	=15pF S1	30	00	113
from the		Closed			
to shutdown					
Receiver	WAY 10	Figures 2 and 8, C _{RL}	30	60	ns
output high	wxya_	=15pF S2	30	00	115
from		Closed			
to shutdown					
circuit off	t _{SHDN}		500	1000	ns
time					
Driver Enable	† pauvoup:	Figures 4 and 6, CL		2500	ns
from Standby	t _{DZH(SHDN)}	=100pF S2		2300	113
to Output High		Closed			

www.belling.com.cn Page8 V1.1

from standby to output low driver enable	t _{DZL(SHDN)}	Figures 4 and 6, C _L =100pF S1 Closed	2500	ns
Receiver Enable from Standby to Output High	t _{RZH(SHDN)}	Figures 2 and 8, C _{RL} =15pF S2 Closed	2500	ns
Receiver Enable from Standby to Output Low	t _{RZL(SHDN)}	Figures 2 and 8, C _{RL} =15pF S1 Closed	2500	ns

test circuit

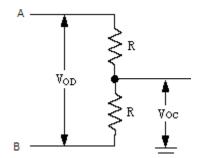


Figure 1: Driver DC Test Load

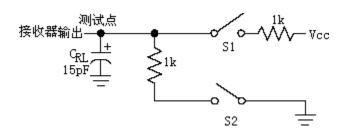


Figure 2: Receiver Enable/Disable Timing Testload

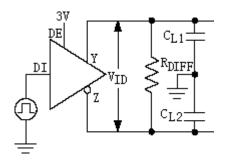


图 3: Driver Timing Test Circuit

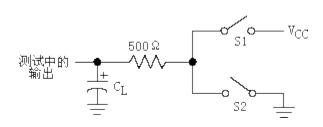


图 4: Driver Enable/Disable Timing Test Load

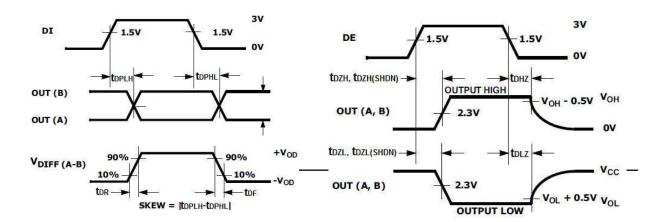
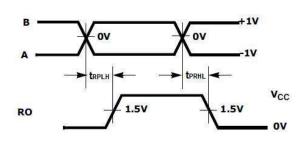



图 5: Driver Propagation Delays

图 6: Driver Enable and Disable Times

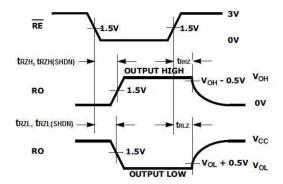


Figure 7: Receiver Propagation Delays

Figure 8: Receiver Enable and Disable Times

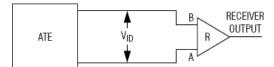


Figure 9: Receiver Propagation Delay Test Circuit

Typical Application Diagram

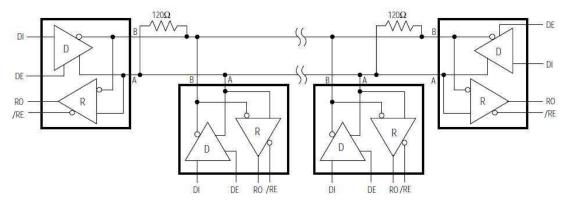
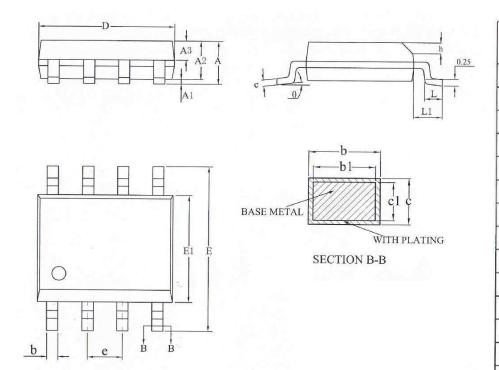



Figure 10 Typical half-duplex RS-485 network

www.belling.com.cn Page11 V1.1

Package size (SOP8)

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
A	_	-	1.77
A1	0.08	0.18	0.28
A2	1.20	1.40	1.60
A3	0.55	0.65	0.75
b	0.39	-	0.48
b1	0.38	0.41	0.44
С	0.20	_	0.26
cl	0.19	0.20	0.21
D	4.70	4.90	5.10
E	5.80	6.00	6.20
E1	3.70	3.90	4.10
e	1.27BSC		
h	0.25		0.50
L	0.50	- Land 1	0.80
LI	1.05REF		
θ	0		8°

www.belling.com.cn Page12 V1.1