

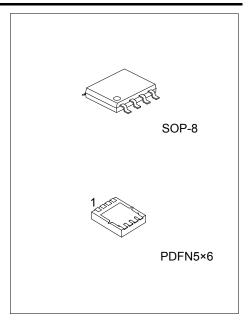
EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at www.hestore.hu.

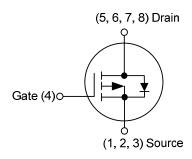
UNISONIC TECHNOLOGIES CO., LTD

UT4421 Power MOSFET

-6.2A, -60V P-CHANNEL POWER MOSFET

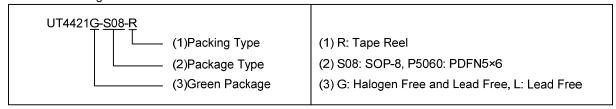

■ DESCRIPTION

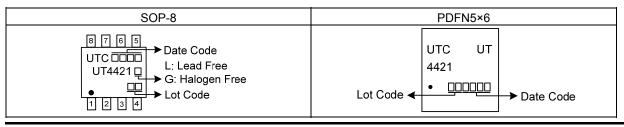
The UTC **UT4421** is a P-channel MOSFET, it uses UTC's advanced technology to provide the customers with a minimum on state resistance and high switching speed.


The UTC **UT4421** is suitable for load switch and battery protection applications.

■ FEATURES

- * $R_{DS(ON)} \le 48 \text{ m}\Omega$ @ $V_{GS} = -10V$, $I_D = -6.2A$ $R_{DS(ON)} \le 63 \text{ m}\Omega$ @ $V_{GS} = -4.5V$, $I_D = -5.0A$
- * High switching speed


■ SYMBOL


■ ORDERING INFORMATION

Ordering Number		Dealtage	Pin Assignment								Da alda a	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing	
UT4421L-S08-R	UT4421G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel	
UT4421L-P5060-R	UT4421G-P5060-R	PDFN5×6	S	S	S	G	D	D	D	D	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 6

UT4421

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C unless otherwise noted)

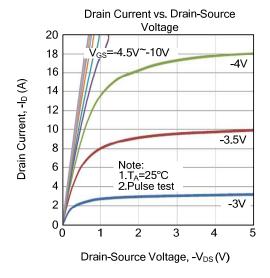
PARAMETER			SYMBOL	RATINGS	UNIT
Drain-Source Voltage			V _{DSS}	-60	V
Gate-Source Voltage			V_{GSS}	±20	V
Drain Current	Continuous	T _A =25°C	I _D	-6.2	Α
		T _A =70°C		-5	Α
	Pulsed		I _{DM}	-40	Α
Power Dissipation SOP-8 PDFN5×6 (T _C =25°C)			2	W	
		PDFN5×6	P_{D}	24	14/
		(T _C =25°C)		31	W
Junction Temperature		T_J	-55 ~ + 150	ů	
Storage Temperature Range		T _{STG}	-55 ~ + 150	Ŝ	

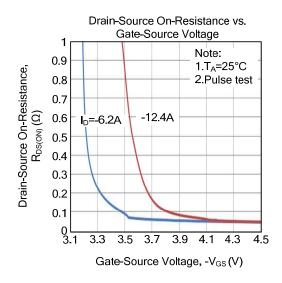
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

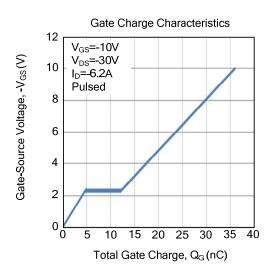
■ THERMAL DATA

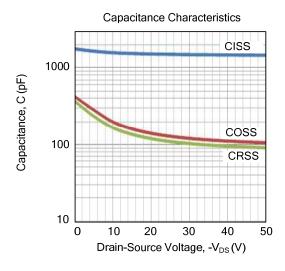
PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	SOP-8	0	75	°C/W
	PDFN5×6	θ _{JA}	65	°C/W
Junction to Case	SOP-8	0	30 (Note)	°C/W
	PDFN5×6	θυς	4 (Note)	°C/W

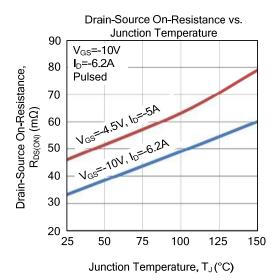
Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

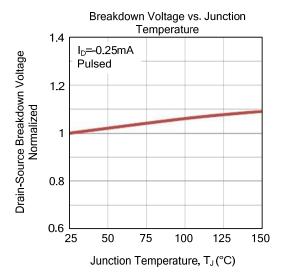

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

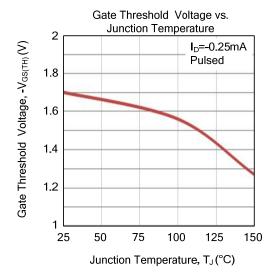

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
STATIC PARAMETERS									
Drain-Source Breakdown Voltag	je	BV _{DSS}	I _D =-250μA, V _{GS} =0V	-60			V		
Zero Gate Voltage Drain Current			V _{DS} =-48V, V _{GS} =0V			-1	μA		
		I _{DSS}	V _{DS} =-48V, V _{GS} =0V, T _J =55°C			-5	μA		
Gate-Source Leakage Current	Forward		V _{GS} =+20V, V _{DS} =0V			+100	nA		
	Reverse	I _{GSS}	V_{GS} =-20V, V_{DS} =0V			-100	nA		
ON CHARACTERISTICS									
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=-250\mu A$	-1.0		-3.0	V		
On State Drain Current		$I_{D(ON)}$	V _{GS} =-10V, V _{DS} =-5V	-40			Α		
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =-10V, I _D =-6.2A		34	48	mΩ		
			V_{GS} =-4.5V, I_D =-5.0A		46	63	mΩ		
Forward Transconductance		g fs	V_{DS} =-5V, I_{D} =-6.2A		18		S		
DYNAMIC PARAMETERS		_			-				
Input Capacitance		C _{ISS}			1500		pF		
Output Capacitance		C_{oss}	V_{GS} =0V, V_{DS} =-30V, f=1.0MHz		115		pF		
Reverse Transfer Capacitance		C_{RSS}			100		pF		
Gate Resistance		R_G	V _{GS} =0V, V _{DS} =0V, f=1MHz			10	Ω		
SWITCHING PARAMETERS		_			ā.				
Total Gate Charge		Q_{G}	V_{GS} =-4.5V, V_{DS} =-30V, I_{D} =-6.2A		19		nC		
Total Gate Charge		Q_{G}			36	55	nC		
Gate to Source Charge		Q_{GS}	V_{GS} =-10V, V_{DS} =-30V, I_{D} =-6.2A		5		nC		
Gate to Drain Charge		Q_GD			8		nC		
Turn-ON Delay Time		t _{D(ON)}			8		ns		
Rise Time		t_R	V_{GS} =-10V, V_{DS} =-30V, R_L =4.7 Ω ,		17		ns		
Turn-OFF Delay Time		t _{D(OFF)}	R_{GEN} =3 Ω		40		ns		
Fall-Time		t _F			21		ns		

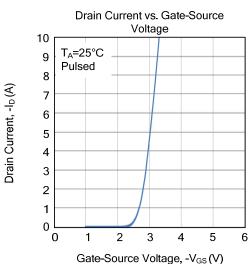

Notes: 1. The value of θ_{JA} is measured with the device mounted on $1in^2FR-4$ board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}C$. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10 s thermal resistance rating.

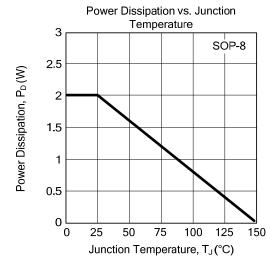

- 2. Repetitive rating, pulse width limited by junction temperature.
- 3. The θ_{JA} is the sum of the thermal impedence from junction to lead θ_{JL} and lead to ambient.

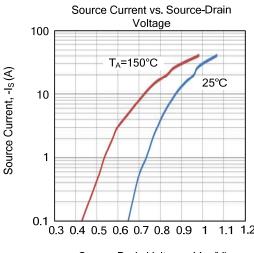

■ TYPICAL CHARACTERISTICS

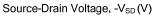


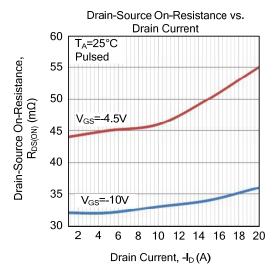


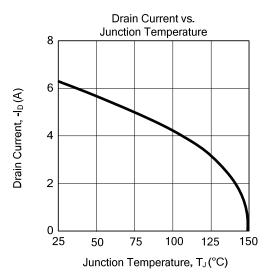


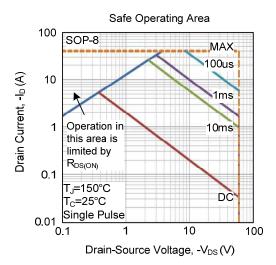





■ TYPICAL CHARACTERISTICS (Cont.)







■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.