

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at www.hestore.hu.

25 +25W STEREO AMPLIFIER WITH MUTE & ST-BY

- WIDE SUPPLY VOLTAGE RANGE (UP TO ±25V ABS MAX.)
- SPLIT SUPPLY
- HIGH OUTPUT POWER 25 + 25W @ THD =10%, $R_L = 8\Omega$, $V_S = \pm 20V$
- NO POP AT TURN-ON/OFF
- MUTE (POP FREE)
- STAND-BY FEATURE (LOW Iq)
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION

DESCRIPTION

The TDA7265 is class AB dual Audio power amplifier assembled in the Multiwatt package, specially designed for high quality sound application as Hi-Fi music centers and stereo TV sets.

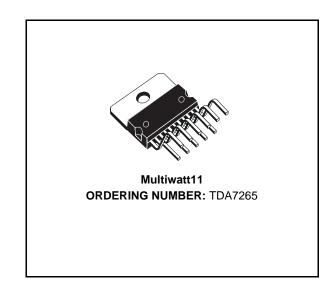
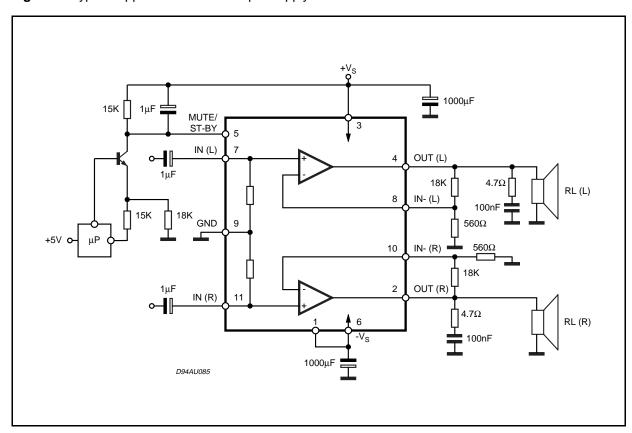
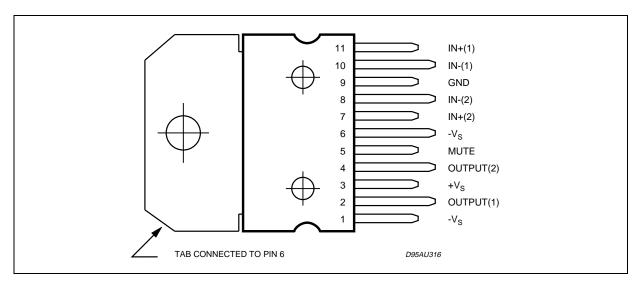



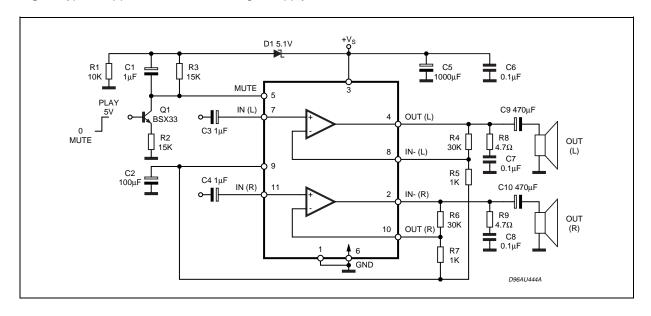
Figure 1: Typical Application Circuit in Split Supply



April 2002 1/11

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	DC Supply Voltage	±25	V
lo	Output Peak Current (internally limited)	4.5	Α
P _{tot}	Power Dissipation T _{case} = 70°C	30	W
T _{op}	Operating Temperature	-20 to 85	°C
T_{stg} , T_j	Storage and Junction Temperature	-40 to +150	°C


PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Description		Value	Unit
R _{th j-case}	Thermal Resistance Junction-case	Max	2	°C/W

Fig 2: Typical Application Circuit in Single Supply

2/11

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $V_S = \pm~20V$; $R_L = 8\Omega$; $R_S = 50\Omega$; $G_V = 30dB$; f = 1KHz; $T_{amb} = 25^{\circ}C$, unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Range		<u>+</u> 5		<u>+</u> 25	V
I_q	Total Quiescent Current			80	130	mA
Vos	S Input Offset Voltage		-20		+20	mV
Ι _b	Non Inverting Input Bias Current			500		nA
Po	Music Output Power (*)	THD = 10%; R _L = 8Ω; $V_S = \pm 22.5V$		32		W
Po	Output Power	$THD = 10\%$ $R_L = 8\Omega ;$ $V_S \pm 16V; R_L = 4\Omega$	20	25 25		W W
		$THD = 1\%$ $R_L = 8\Omega;$ $V_S \pm 16V; R_L = 4\Omega$		20 20		W W
THD	Total Harmonic Distortion	$R_L = 8\Omega$; $P_O = 1W$; $f = 1KHz$		0.01		%
		$R_L = 8\Omega$; $P_O = 0.1$ to 15W; f = 100Hz to 15KHz			0.7	%
		$R_L = 4\Omega$; $P_O = 1W$; $f = 1KHz$		0.02		%
		$R_L = 4\Omega$; $V_S \pm 16V$; $P_O = 0.1$ to 12W; f = 100Hz to 15KHz			1	%
Ст	Cross Talk	f = 1KHz f = 10KHz		70 60		dB dB
SR	Slew Rate			10		V/μs
G_OL	Open Loop Voltage Gain			80		dB
e _N	Total Input Noise	A Curve f = 20Hz to 22KHz		3 4	8	μV μV
R _i	Input Resistance		15	20		ΚΩ
SVR	Supply Voltage Rejection (each channel)	fr = 100Hz Vr = 0.5V		60		dB
Tj	Thermal Shut-down Junction Temperature			145		°C
MUTE FUN	CTION [ref: +Vs]					
VT _{MUTE}	Mute / Play Threshold		-7	-6	-5	V
A _M	Mute Attenuation		60	70		dB
STAND-BY	FUNCTION [ref: +Vs]					
VT _{ST-BY}	Stand-by / Mute Threshold		-3.5	-2.5	-1.5	V
A _{ST-BY}	Stand-by Attenuation			110		dB
I _{q ST-BY}	Quiescent Current @ Stand-by			3		mA

Note: (*) FULL POWER up to. $V_S = \pm 22.5 V$ with $R_L = 8 \Omega$ and $V_S = \pm 16 V$ with $R_L = 4 \Omega$ **MUSIC POWER** is the maximal power which the amplifier is capable of producing across the rated load resistance (regardless of non linearity) 1 sec after the application of a sinusoidal input signal of frequency 1KHz.

Figure 3: Quiescent Current vs. Supply Voltage

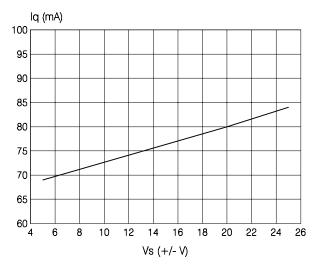


Figure 5: Output Power vs. Supply Voltage

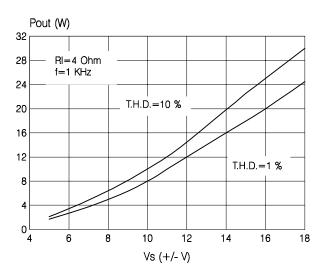


Figure 7: Output Power vs. Supply Voltage

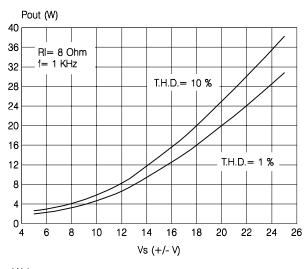


Figure 4: Frequency Response

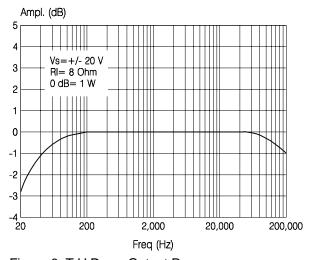


Figure 6: T.H.D. vs. Output Power

Figure 8: T.H.D. vs. Output Power

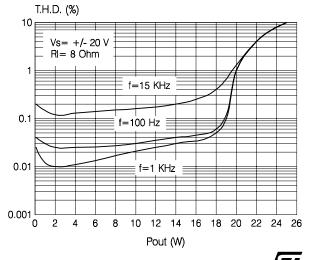


Figure 9: Quiescent Current vs. Pin # 5 Voltage

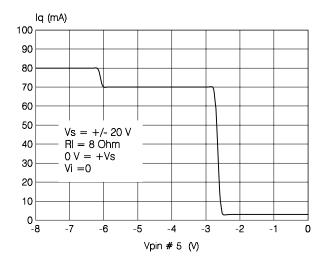


Figure 11: SVR vs. Frequency

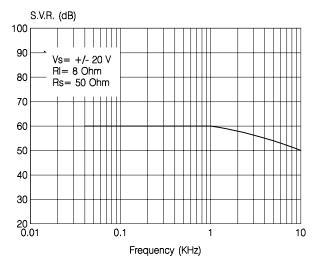


Figure 13: Power Dissipaton vs. Output Power

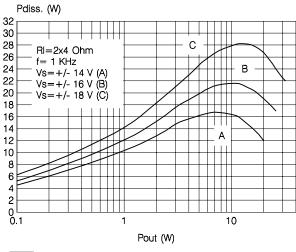


Figure 10: Attenuation vs. Pin # 5 Voltage

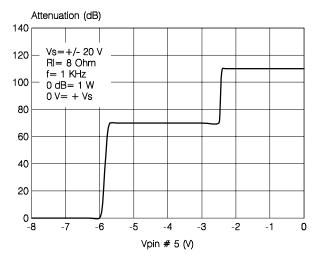


Figure 12: Crosstalk vs. Frequency

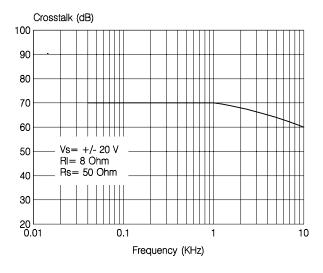
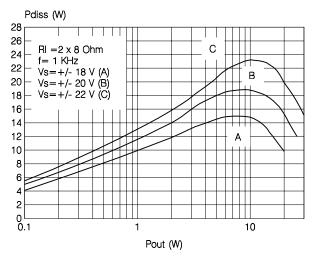



Figure 14: Power Dissipaton vs. Output Power

57

MUTE STAND-BY FUNCTION

The pin 5 (MUTE/STAND-BY) controls the amplifier status by two different thresholds, referred to $\pm V_S$.

- When V_{pin5} higher than = +Vs 2.5V the amplifier is in Stand-by mode and the final stage generators are off
- when V_{pin5} is between +Vs 2.5V and +Vs 6V the final stage current generators are switched on and the amplifier is in mute mode
- when V_{pin5} is lower than +Vs 6V the amplifier is play mode.

Figure 15

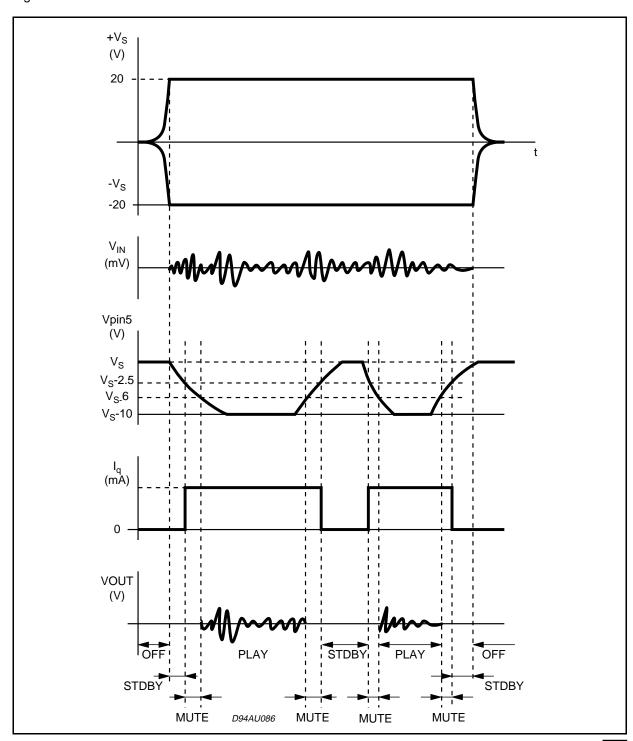


Figure 16: Test and Application Circuit (Stereo Configuration)

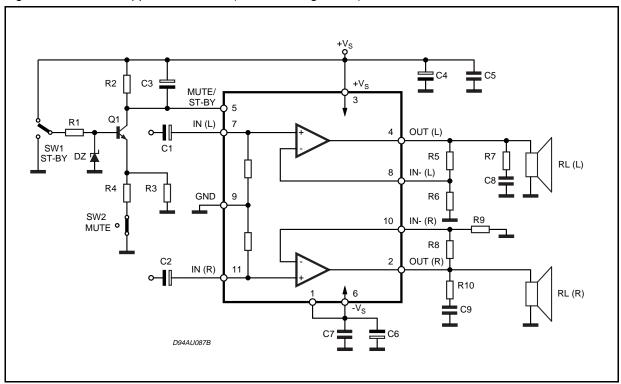
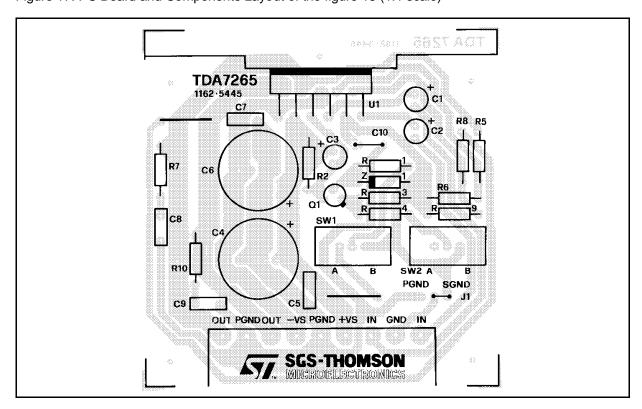



Figure 17: PC Board and Components Layout of the figure 15 (1:1 scale)

APPLICATIONS SUGGESTION

(Demo Board Schematic)

The recommended values of the external compo-

nents are those shown are the demo board schematic different values can be used: the following table can help the designer.

COMPONENTS	RECOMMENDED VALUE	PURPOSE	LARGER THAN RECOMMENDED VALUE	SMALLER THAN RECOMMENDED VALUE			
R1	10ΚΩ	Mute Circuit	Increase of Dz Biasing Current				
R2	15ΚΩ	Mute Circuit	V _{pin} # 5 Shifted Downward	V _{pin} # 5 Shifted Upward			
R3	18ΚΩ	Mute Circuit	V _{pin} # 5 Shifted Upward	V _{pin} # 5 Shifted Downward			
R4	15ΚΩ	Mute Circuit	V _{pin} # 5 Shifted Upward	V _{pin} # 5 Shifted Downward			
R5, R8	18ΚΩ	Closed Loop Gain	Increase of Gain				
R6, R9	Setting (*)		Decrease of Gain				
R7, R10	4.7Ω	Frequency Stability	Danger of Oscillations	Danger of Oscillations			
C1, C2	1μF	Input DC Decoupling		Higher Low Frequency Cutoff			
СЗ	1μF	St-By/Mute Time Constant	Larger On/Off Time	Smaller On/Off Time			
C4, C6	1000μF	Supply Voltage Bypass		Danger of Oscillations			
C5, C7	0.1μF	Supply Voltage Bypass		Danger of Oscillations			
C8, C9	0.1μF	Frequency Stability					
Dz	5.1V	Mute Circuit					
Q1	BC107	Mute Circuit					

^(*) Closed loop gain has to be => 25dB

MUTE, STAND-BY TRUTH TABLE

SW1	SW2	
В	А	STAND-BY
В	В	STAND-BY
Α	А	MUTE
А	В	PLAY

BRIDGE APPLICATION

Another application suggestion concerns the BRIDGE configuration, where the two power amplifiers are connected as shown by the schematic diagram of figure. 18.

This application shows, however, some operative limits due to dissipation and current capability of the output stage. For this reason, we reccomend to use the TDA7265 in bridge with the supply voltage equal/lower than $\pm 16 \text{V}$ when the load is 8Ω ; with higher loads (i.e. 16Ω), the amplifier can work correctly in the whole supply voltage range.

The detected characteristics of T.H.D. vs Pout and Frequency Response are shown in fig.19 and fig.20.

With R1=8 Ω , Vs=+/-16V the maximum output power obtainable is 50W at T.D.H.=10%.

The quiescent current remains unchanged with respect to the stereo configuration (~80mA as typical at Vs=+/-16V).

The last point to take into consideration concerns the short-circuit protection. As for the stereo application, the TDA7265 is fully protected against any kind of short-circuit (between Out/Gnd, Out/+Vs and Out/-Vs).

Figure 18: Bridge Application Circuit

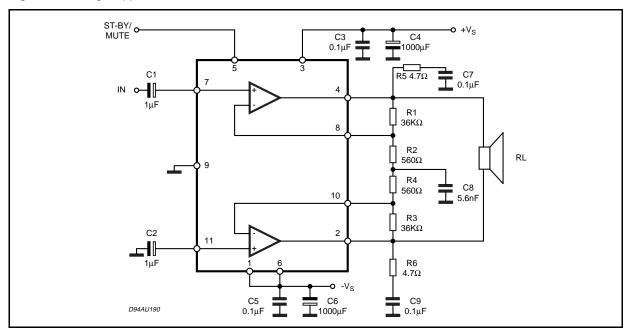
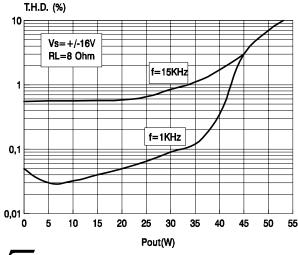
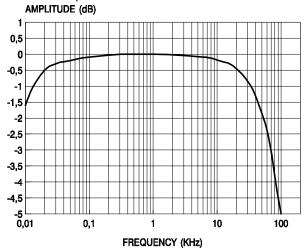
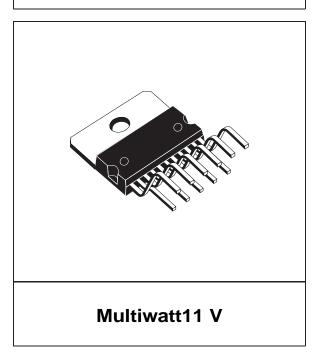
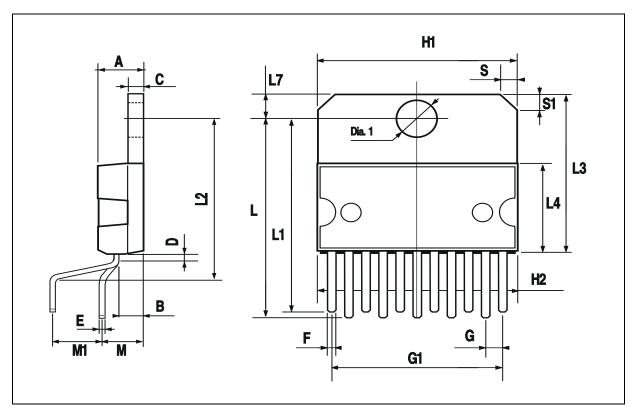


Figure 19: Distortion vs. Output Power


Figure 20: Frequency Response of the Bridge Applications



9/11

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			5			0.197
В			2.65			0.104
С			1.6			0.063
D		1			0.039	
E	0.49		0.55	0.019		0.022
F	0.88		0.95	0.035		0.037
G	1.45	1.7	1.95	0.057	0.067	0.077
G1	16.75	17	17.25	0.659	0.669	0.679
H1	19.6			0.772		
H2			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
L1	21.7	22.1	22.5	0.854	0.87	0.886
L2	17.4		18.1	0.685		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
М	4.25	4.55	4.85	0.167	0.179	0.191
M1	4.73	5.08	5.43	0.186	0.200	0.214
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

OUTLINE AND MECHANICAL DATA

10/11

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics ®2002 STMicroelectronics – Printed in Italy – All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India -Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

