HESTORE.HU

EN: This Datasheet is presented by the manufacturer.
Please visit our website for pricing and availability at www.hestore.hu.

SPECIFICATION FOR APPROVAL

CUSTOMER :
DESCRIPTION : DC CERAMIC DISC CAPACITOR

Prepared	Checked	Approved	Date

Revision No.: 02 Page No.2	Prepared	ZHANG ZT	Document No.
	ZHAO JB	HM-ES-027/1	

1.Scope

This specification relates to DC ceramic disc capacitor intended for use in telecommunication and electronic devices.

2. Part number

CC4102KY5P102B5LS-LF

$\begin{array}{llllllllll}\text { CC } & 4 & 102 & \mathrm{~K} & \text { Y5P } & 102 & \mathrm{~B} & 5 \mathrm{LS} & - & \text { LF }\end{array}$
(1) (2)
(3)
(4) (5)
(6)
(7) (8)
(9) (10)

The part number consists of 10 sections. The meaning in each section is as follows:
(1) Capacitor type code
(2) No of total character $102=1000=4$
(3) Rated capacitance

Numerical symbol	Capacitance
102	1000 PF
101	100 PF
100	10 PF
1 R 0	1 PF

(4) Capacitance tolerance

Letter symbol	Capacitance tolerance
C	$\pm 0.25 \mathrm{pF}$
D	$\pm 0.5 \mathrm{pF}$
J	$\pm 5 \%$
K	$\pm 10 \%$
M	$\pm 20 \%$
Z	$+80,-20 \%$

(5) Temperature coefficient or temperature characteristics

Symbol	Temperature coefficient or temperature characteristics
C 0 H	$0 \pm 60 * 10^{-6}{ }^{\circ} \mathrm{C}$
SL	+100 to $-1000^{*} 10^{-6}{ }^{\circ} \mathrm{C}$
Y5P	$\pm 10 \%$
Y5R,YR	$\pm 15 \%$
Y5U,Z5U	$+20 \%$ to -55%
Y5V,Z5V	$+20 \%$ to -80%

(6) Rated voltage

Letter symbol	Rated voltage (V)
102	1000
500	50
630	63

(7) Packing

Numerical symbol	
B	Bulk Pack
A	Ammo BoX \backslash

Revision No.: 02 Page No.3	Prepared	ZHANG ZT	Document No.
	ZHAO JB	HM-ES-027/1	

(8) Lead Spacing

Numerical symbol	Lead spacing *
2LS	2.5 ± 0.8
5LS	5.0 ± 0.8
7 LS	7.5 ± 1.0
10LS	10.0 ± 1.0

* For the capacitors in bulk packing only. For taped capacitors the lead spacing conform to figure 2 or figure 3.
(9) -
(10) Lead Free

3. Standard atmospheric condition
3.1 Temperature: $15 \sim 35^{\circ} \mathrm{C}$
3.2 Relative humidity: 45~75\%
3.3 Atmospheric pressure: $86 \sim 106 \mathrm{kPa}$ (860~1060 mbar)
4. Operating and storage temperature range
4.1 Operating temperature range:

Temperature characteristic	Lowest operating temperature	Highest operating temperature
SL,C0H	$-25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$
Y5P, Y5R,Y5U \& Y5V	$10^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$
Z5U, Z5V	$-25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$
YR		

4.2 Storage temperature range: -10 to $+40^{\circ} \mathrm{C}$
5. Characteristics and test methods
5.1 Electrical characteristics and test methods

	Item	Test method	Specification
1	Capacitance \& tolerance	The capacitance shall be measured at $20^{\circ} \mathrm{C}$ with 1 MHz and 1 Vrms (Class I), 1 kHz and 1 Vrms (class II), 1 kHz and 0.1 Vrms (for class III).	Refer to individual sheet
2	$\begin{aligned} & \text { Quality factor } \\ & \text { or dissipation } \\ & \text { factor } \end{aligned}$	The quality factor or dissipation factor shall be measured at the same conditions as above.	$\begin{aligned} & \mathrm{Q} \geqslant 400+20 \mathrm{Cr}(\text { for } \mathrm{Cr}<30 \mathrm{pF}) \\ & \mathrm{Q} \geqslant 1000 \text { (for } \mathrm{Cr} \geqslant 30 \mathrm{pF} \text {) } \\ & \quad \mathrm{Cr} \text { - -rated capacitance in unit of } \\ & \mathrm{pF} \\ & 2.5 \% \text { max. (for Y5P, YR,Y5U and } \\ & \mathrm{Z5U} \text {) } \\ & 3.5 \% \text { max. (for Y5V and } \mathrm{Z5V} \text {) } \\ & 5 \% \text { max.(for SBBLC Y5V and Y5U) } \\ & 3.5 \% \text { max.(for SBBLC Y5P) } \end{aligned}$
3	Insulation resistance	The insulation resistance shall be measured with rated voltage within 60 ± 5 seconds of charging.	$10000 \mathrm{M} \Omega$ min.
4	Voltage proof	The voltage of 300% rated voltage (for rated voltage 50 V and 500 V), 200% rated voltage (for rated voltage 1000 V to 2000 V), 175% rated voltage (for	No breakdown or flashover

Revision No.: 02 Page No.4	Prepared	ZHANG ZT	Document No.
	ZHAO JB	HM-ES-027/1	

Revision No.: 02 Page No.5	Prepared	ZHANG ZT	Document No. HM-ES-027/1

5.2 Mechanical characteristics and test methods

	Item	Test method	Specification
1	Robustness of Termination	The capacitor body shall be held in such a manner so that axis of the lead is vertical. The tensile force of 10 N (for $\Phi 0.6 \mathrm{~mm}$ lead) or 5 N (for $\Phi 0.5 \mathrm{~mm}$ lead) shall be applied to the lead in a direction of its axis and acting in a direction away from the body of the capacitor for 10 ± 1 seconds.	The capacitor shall be no broken and the lead shall be no loosened or cut off.
2	Bending	The capacitor is held in such a manner so that axis of the lead is vertical. A mass applying a force of 5 N (for $\Phi 0.6 \mathrm{~mm}$ lead) or 2.5 N (for $\Phi 0.5 \mathrm{~mm}$ lead) is then suspended from the end of the lead. The body of the capacitor is then inclined within a period of 2 to 3 seconds, through an angle of approximately 90° in the vertical plane and then returned to its initial position over the same period of time. This operation constitutes one bend. The lead shall be subjected to a total of 2 alternating bends in two opposite directions.	The lead shall be no broken.

5.3 Endurance characteristics and test methods

	Item	Test method	Specification	
1	Solderability	Solder temperature: $235 \pm 5^{\circ} \mathrm{C}$ Immersion time: 2 ± 0.5 seconds Immersion speed: $25 \pm 6 \mathrm{~mm} / \mathrm{s}$	A new uniform coating of solder shall cover a minimum of 95% of the surface being immersed.	
2	Vibration	Frequency range: $10 \sim 55 \mathrm{~Hz}$ Amplitude (total excursion): 1.5 mm Speed of frequency change: $10 \sim 55 \sim 10 \mathrm{~Hz}$ in about 1 minute Total duration: 6 hours This motion shall be applied for 2 hours in each of three mutually perpendicular directions.	Appearance	No visible damage
			Capacitance change	Within specified tolerance
			Quality factor or dissipation factor	Refer to clause 5.1.2
3	Resistance to soldering heat	Solder temperature and immersion time: $260 \pm 5^{\circ} \mathrm{C}, 10 \pm 0.5 \text { seconds }$ The immersing depth shall be a position 1.27 mm from the seating plane. Post-treatment: The capacitor shall be preserved at the standard atmospheric condition for 24 ± 2 hours.	Appearance	No visible damage
			Capacitance change	$\pm 2.5 \%$ or $\pm 0.25 \mathrm{pF}$ (whichever is the greater, for class I) $\pm 5 \%$ (for Y5P and YR) $\pm 15 \%$ (forY5U and Z5U) $\pm 20 \%$ (forY5V and Z5V)
			Voltage proof (for between leads only)	Refer to clause 5.1.4

Revision No.: 02 Page No.6	Prepared	ZHANG ZT	Document No. HM-ES-027/1

	Item	Test method	Specification	
4	Solvent resistance	The capacitor shall be immersed into isopropylalcohol for 30 ± 5 seconds.	Appearance	No visible damage Legible marking
5	Temperature cycle	The capacitor shall be placed in the test chamber at temperature of -25 $\pm 2^{\circ} \mathrm{C}$ for 30 minutes, then at room temperature for 3minutes, at $85 \pm$ $2{ }^{\circ} \mathrm{C}\left(125 \pm 2{ }^{\circ} \mathrm{C}\right.$ for YR) for 30minutes and at room temperature for 3minutes. This operation constitutes one cycle. The capacitor shall be subjected to a total of 5 cycles. Post-treatment: The capacitor shall be preserved at the standard atmospheric condition for 24 ± 2 hours.	Appearance	No visible damage Legible marking
			Capacitance change	$\begin{aligned} & \pm 5 \% \text { or } \pm 0.5 \mathrm{pF} \\ & \text { (whichever is the greater, for class } \\ & \text { I) } \\ & \pm 10 \% \text { (Y5P and YR) } \\ & \pm 20 \% \text { (Y5U and Z5U) } \\ & \pm 30 \% \text { (Y5V and } \quad \mathrm{Z5V} \text {) } \end{aligned}$
			Quality factor or dissipation factor	$\begin{aligned} & \mathrm{Q} \geqslant 200+10 \mathrm{Cr} \quad \text { (for } \mathrm{Cr}<10 \mathrm{pF} \\ & \mathrm{Q} \geqslant 275+(5 / 2) \mathrm{Cr} \quad \text { (for } 10 \mathrm{pF} \leqslant \mathrm{Cr} \\ & <30 \mathrm{pF} \\ & \mathrm{Q} \geqslant 350 \quad(\text { for } \mathrm{Cr} \geqslant 30 \mathrm{pF}) \\ & 5 \% \text { max. (Y5V\& Z5V) } \\ & 3 \% \text { max.(Y5P, YR ,Y5U\&Z5U) } \\ & 7.5 \% \text { max (SBBLC) } \end{aligned}$
			Insulation resistance	$\begin{aligned} & 1000 \mathrm{M} \Omega \min . \\ & 500 \mathrm{M} \Omega \min .(\mathrm{SBBLC}) \end{aligned}$
			Voltage proof	For between leads only. Refer to clause 5.1.4
6	Damp heat	The capacitor shall be stored for 500^{+24} hours at a temperature of $40 \pm 2^{\circ} \mathrm{C}$ and a relative humidity of 90 to 95%. Post-treatment: The capacitor shall be preserved for 1 to 2 hours at the standard atmospheric condition.	Appearance	No visible damage
			Capacitance change	As the same of clause 5.3.5.
			Q or DF	As the same of clause 5.3.5.
			Insulation resistance	$\begin{aligned} & 2500 \mathrm{M} \Omega \min . \text { (Class I) } \\ & 1000 \mathrm{M} \Omega \min \text { (class II) } \\ & 500 \mathrm{M} \Omega \min (\text { for class III) } \end{aligned}$
			Voltage proof	For between leads only. Refer to clause 5.1.4
7	Endurance	The voltage that is equal to 200% rated voltage (for 50 V and 500 V capacitors), 150% rated voltage (for $1 \mathrm{KV} \sim 3 \mathrm{KV}$ capacitors), or 125% rated voltage (for DCG or SBBLC) shall be applied continuously to the capacitor at temperature of 85 $\pm 3{ }^{\circ} \mathrm{C}\left(125 \pm 3{ }^{\circ} \mathrm{C}\right.$ for YR $)$ for 1000^{+48} hours. Post-treatment: The capacitor shall be preserved at the standard atmospheric condition for 24 ± 2 hours.	Appearance Capacitance change	As the same of clause 5.3.5.
			Quality factor or dissipation factor	
			Insulation resistance	
			Voltage proof	

Revision No.: 02 Page No.7	Prepared	ZHANG ZT	Document No. Checked

LEAD STYLE

Figure 1-1

Style l

Figure 1-2

STYLE P

Figure 1-5

Figure 1-3

Figure 1-4

STYLE H

Figure 1-6

Revision No.: 02 Page No.8	Prepared	ZHANG ZT	Document No.
	ZHAO JB	HM-ES-027/1	

TAPING STYLE F

1.* For lead styles of inside kink and outside kink only
2. The lead sharp shall change with lead style.

Symbol	Dimension(mm)
P0	12.7 ± 0.2
P	12.7 ± 1.0
F	$5.0{ }_{-0.2}^{+0.5}$
P1	3.85 ± 0.4
P2	6.35 ± 0.4
H0	16.0 ± 0.5 *
H	20.0 ± 0.5
W	18.0 ± 0.5
W0	8.0 min .
W1	9.0 ± 0.3
W2	3.0max.
t	0.7 ± 0.2
D	To comply with individual sheet
D0	4 ± 0.2
d	To comply with individual sheet
1	0max.
L	11max.
T	To comply with individual sheet
$\Delta \mathrm{S}$	0.5 max .
$\Delta \mathrm{h}$	0.5 max .

Figure 2

Revision No.: 02 Page No.9	Prepared	ZHANG ZT	Document No. HM-ES-027/1

TAPING STYLE V

1. * For lead styles of inside kink and outside kink only.
2. The lead sharp shall change with lead style.

Symbol	Dimension(mm)
P0	15.0 ± 0.2
P	15.0 ± 1.0
F	$7.5{ }_{-0.5}^{+0.5}$
P1	3.75 ± 0.4
P2	7.5 ± 0.4
H0	$16.0 \pm 0.5^{*}$
H	20.0 ± 0.5
W	18.0 ± 0.5
W0	11.5 min .
W1	9.0 ± 0.3
W2	3.0max.
t	0.7 ± 0.2
D	To comply with individual sheet
D0	4 ± 0.2
d	To comply with individual sheet
1	0max.
L	11max.
T	To comply with individual sheet
$\Delta \mathrm{S}$	0.5 max .
$\Delta \mathrm{h}$	0.5 max.

Figure 3

Revision No.: 02 Page No.10	Prepared	ZHANG ZT	Document No.
	ZHAO JB	HM-ES-027/1	

TAPING STYLE Y

1. *For lead styles of inside kink and outside kink only
2. The lead sharp shall change with difference of lead style.

Symbol	Dimension(mm)
P0	15.0 ± 0.2
P	30.0 ± 1.0
F	$7.5{ }_{-0.2}^{+0.5}$
P1	3.75 ± 040
P2	7.5 ± 0.4
H0	16.0 ± 0.5 *
H	20.0 ± 0.5
W	18.0 ± 0.5
W0	11.5 min .
W1	9.0 ± 0.3
W2	3.0 max .
t	0.7 ± 0.2
D	To comply with individual sheet
D0	4 ± 0.2
d	To comply with individual sheet
1	0max.
L	11max.
T	To comply with individual sheet
$\Delta \mathrm{S}$	0.5 max .
$\Delta \mathrm{h}$	0.5 max .

Figure 4

Revision No.: 02 Page No.11	Prepared	ZHANG ZT	Document No.
	ZHAO JB	HM-ES-027/1	

TAPING STYLE S

1.*For crimp lead style only.
2.Crimp shape of lead shall change with lead style.

Symbol	Dimension(mm)
P0	15.0 ± 0.3
P	30.0 ± 2.0
F	7.5 ± 1.0
P1	3.75 ± 1.0
P2	7.5 ± 1.5
H0	16.0 ± 0.5 *
H	$20.0{ }_{-1.0}^{+1.5}$
W	18.0 ± 0.5
W0	11.5 min .
W1	9.0 ± 0.5
W2	3.0 max .
t	0.7 ± 0.2
D	To comply with individual sheet
D0	4 ± 0.3
d	To comply with individual sheet
1	2 max .
L	11max.
T	To comply with individual sheet
$\Delta \mathrm{S}$	0 ± 1.5
$\Delta \mathrm{h}$	2 max .

Figure 5

Revision No.: 02 Page No.12	Prepared	ZHANG ZT	Document No. HM-ES-027/1

TAPING STYLE U

Symbol	Dimension(mm)
P0	12.7 ± 0.2
P	25.4 ± 1.0
F	$10.0{ }_{-0.2}^{+0.5}$
P1	7.7 ± 0.4
P2	
H0	16.0 ± 0.5 *
H	20.0 ± 0.5
W	18.0 ± 0.5
W0	11.5 min .
W1	9.0 ± 0.3
\mathbf{W}_{2}	3.0max.
t	0.7 ± 0.2
D	To comply with individual sheet
D0	4 ± 0.2
d	To comply with individual sheet
I	Omax.
L	11max.
T	To copmply with individual shee
$\Delta \mathrm{S}$	0.5 max .
$\Delta \mathrm{h}$	0.5 max .

1. *For lead styles of inside kink and outside kink only
2. The lead sharp shall change with lead style.
