

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at www.hestore.hu.

AO4620

Complementary Enhancement Mode Field Effect Transistor

General Description

The AO4620 uses advanced trench technology MOSFETs to provide excellent $R_{DS(ON)}$ and low gate charge. The complementary MOSFETs may be used in inverter and other applications.

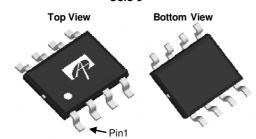
Features

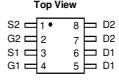
n-channel $V_{DS}(V) = 30V$ $I_{D} = 7.2A(V_{GS}=10V)$

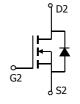
 $R_{DS(ON)}$ R_{DS}

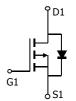
 $< 24m\Omega \text{ (V}_{GS}=10V)$ $< 36m\Omega \text{ (V}_{GS}=4.5V)$ p-channel -30V

 $-5.3A (V_{GS} = -10V)$


R_{DS(ON)}


 $< 32m\Omega (V_{GS} = -10V)$ $< 55m\Omega (V_{GS} = -4.5V)$


100% UIS tested 100% Rg tested



n-channel

p-channel

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

Parameter		Symbol	Max n-channel	Max p-channel	Units	
Drain-Source Voltage		V_{DS}	30	-30	V	
Gate-Source Voltage		V_{GS}	±20	±20	±20 V	
Continuous Drain	T _A =25℃		7.2	-5.3		
Current ^F	T _A =70℃	I _D	6.2	-4.5	Α	
Pulsed Drain Current ^B		I _{DM}	64	-40		
	T _A =25℃	D	2	2	w	
Power Dissipation F	T _A =70℃	$-P_{D}$	1.44	1.44	VV	
Avalanche Current B	-	I _{AR}	9	17	Α	
Repetitive avalanche energy 0.3mH ^B		E _{AR}	12	43	mJ	
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	-55 to 150	C	
				•		

Thermal Characteristics: n-channel and p-channel

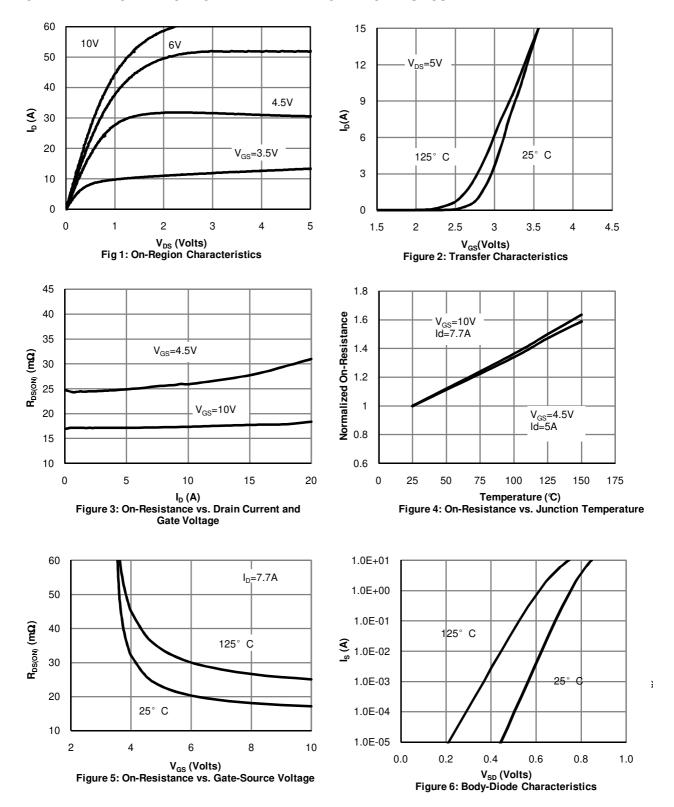
Parameter	Symbol	Device	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	n-ch	50	62.5	℃/W
Maximum Junction-to-Ambient A	Steady-State	Π _θ JA	n-ch	80	100	℃/W
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	n-ch	32	40	€/M
Maximum Junction-to-Ambient A	t ≤ 10s	- R _{eJA}	p-ch	50	62.5	℃/W
Maximum Junction-to-Ambient A	Steady-State	п⊕ЈА	p-ch	80	100	℃/W
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	p-ch	32	40	€/M

N-CHANNEL Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC P	PARAMETERS		·			
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V			1	μА
		T _J =55℃	=55℃		5	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250\mu A$	1.5	2.1	2.6	V
$I_{D(ON)}$	On state drain current	$V_{GS}=10V$, $V_{DS}=5V$	64			Α
		V _{GS} =10V, I _D =7.2A		17.7	24	mO
$R_{DS(ON)}$	Static Drain-Source On-Resistance	T _J =1	125℃	25	32	mΩ
		V_{GS} =4.5V, I_D =5A		24.8	36	mΩ
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=7.2A$		20		S
V_{SD}	Diode Forward Voltage	$I_S=1A, V_{GS}=0V$		0.74	1	V
Is	Maximum Body-Diode Continuous Current				2.5	Α
I _{SM}	Pulsed Body-Diode Current ^B				64	Α
DYNAMIC	PARAMETERS		•			
C _{iss}	Input Capacitance			373	448	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz		67		pF
C _{rss}	Reverse Transfer Capacitance			41		pF
R_g	Gate resistance	$V_{GS}=0V$, $V_{DS}=0V$, $f=1MHz$		1.8	2.8	Ω
SWITCHII	NG PARAMETERS		•			
Q _g (10V)	Total Gate Charge			7.2	11	nC
Q _g (4.5V)	Total Gate Charge] -V _{GS} =10V, V _{DS} =15V, I _D =7.2.	^	3.5		nC
Q_{gs}	Gate Source Charge	V _{GS} =10V, V _{DS} =13V, I _D =7.2	^	1.3		nC
Q_{gd}	Gate Drain Charge			1.7		nC
t _{D(on)}	Turn-On DelayTime			4.5		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =2.1	Ω,	2.7		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		14.9		ns
t _f	Turn-Off Fall Time			2.9		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =7.2A, dI/dt=100A/μs		10.5	12.6	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =7.2A, dI/dt=100A/μs		4.5		nC

A: The value of R_{BJA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^\circ$ C. The value in any given application depends on the user's specific board design. The current rating is based on the t $\, \leq \,$ 10s thermal resistance rating.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.


B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25 $^\circ$ C. The SOA curve provides a single pulse rating.

F.The power dissipation and current rating are based on the $t \le 10s$ thermal resistance rating. Rev 8: May 2012

N-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

N-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

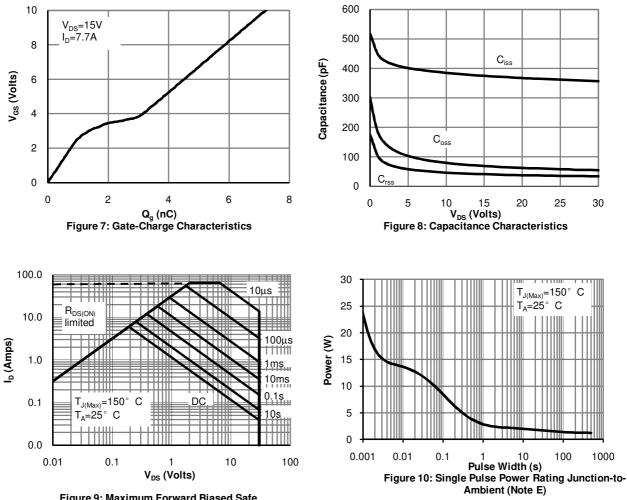
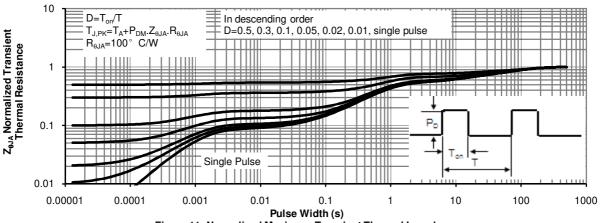



Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

3

Figure 11: Normalized Maximum Transient Thermal Impedance

P-CHANNEL Electrical Characteristics (T_J=25℃ unless otherwise noted)

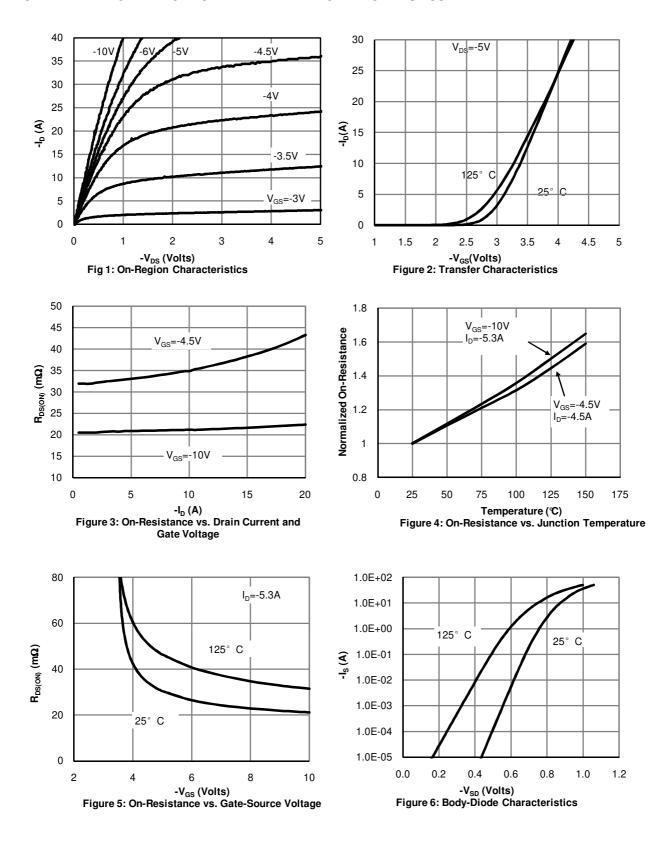
Symbol	Parameter	Conditions		Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-30V, V _{GS} =0V			-1	μА
		T _J =55℃			-5	
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250\mu A$	-1.3	-1.85	-2.4	V
$I_{D(ON)}$	On state drain current	V _{GS} =-10V, V _{DS} =-5V	-40			Α
		V _{GS} =-10V, I _D =-5.3A		23	32	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance	T _J =125℃		31.5		
		V_{GS} =-4.5V, I_{D} =-4.5A		33	55	mΩ
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_{D} =-5.3A		19		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.8	-1	V
Is	Maximum Body-Diode Continuous Current				-3.5	Α
I _{SM}	M Pulsed Body-Diode Current ^B				-40	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			760		pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz		140		pF
C _{rss}	Reverse Transfer Capacitance			95		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		3.2	5	Ω
SWITCHII	NG PARAMETERS					
Q _g (10V)	Total Gate Charge (10V)			13.6	16	nC
Q _g (4.5V)	Total Gate Charge (4.5V)	V _{GS} =-10V, V _{DS} =-15V, I _D =-5.3A		6.7		nC
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -13V, I _D -3.3A		2.5		nC
Q_{gd}	Gate Drain Charge	1		3.2		nC
t _{D(on)}	Turn-On DelayTime			8		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =2.8 Ω ,		6		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		17		ns
t _f	Turn-Off Fall Time]		5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-5.3A, dI/dt=100A/μs		15		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-5.3A, dI/dt=100A/μs		9.7		nC

A: The value of R $_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25 $^\circ$ C. The value in any given application depends on the user's specific board design. The current rating is based on the $t \le 10s$ thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

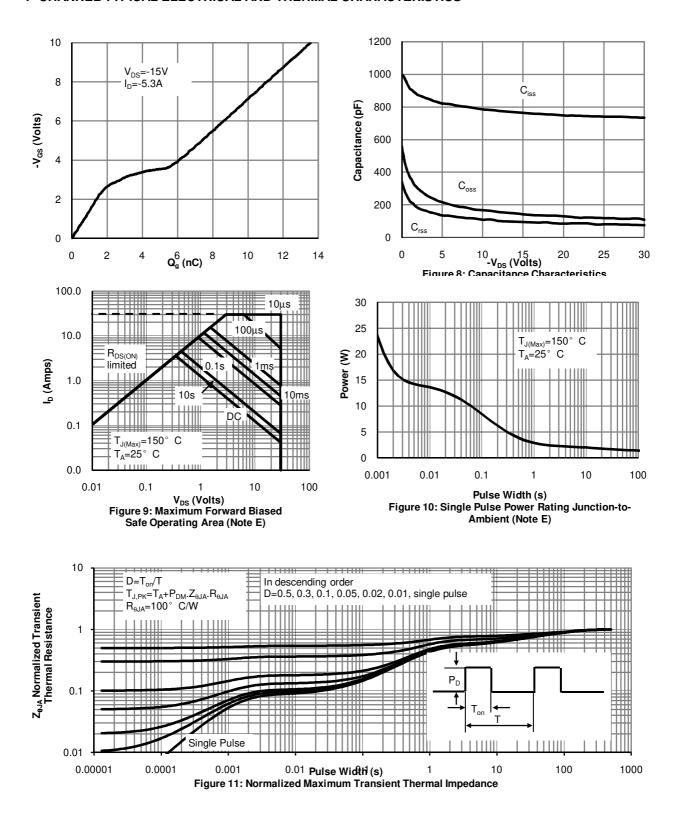
Rev8: May 2012

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.


D. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with


 $T_A=25^{\circ}$ C. The SOA curve provides a single pulse rating.

F.The current rating is based on the $t \leqslant 10\text{s}$ thermal resistance rating.

P-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

P-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

