

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at <u>www.hestore.hu</u>.

TF2104M

Half-Bridge Gate Driver

Features

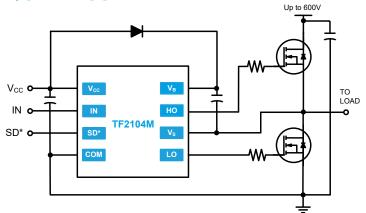
- Floating high-side driver in bootstrap operation to 600V
- Drives two N-channel MOSFETs or IGBTs in a half bridge configuration
- Designed for enhanced performance in noisy motor applications
- 290mA source/600mA sink output current capability
- Outputs tolerant to negative transients
- Internal dead time to protect MOSFETs
- Wide low side gate driver supply voltage: 10V to 20V
- Logic input (IN and SD*) 3.3V capability
- Schmitt triggered logic inputs
- Undervoltage lockout for V_{cc} (logic and low side supply)
- Extended temperature range: -40°C to +125°C

Description

The TF2104M is a high voltage, high speed gate driver capable of driving N-channel MOSFETs and IGBTs in a half bridge configuration. TF Semi's high voltage process enables the TF2104M's high side to switch to 600V in a bootstrap operation.

The TF2104M logic inputs are compatible with standard TTL and CMOS levels (down to 3.3V) to interface easily with controlling devices. The driver outputs feature high pulse current buffers designed for minimum driver cross conduction.

The TF2104M is offered in PDIP-8 and SOIC-8(N) packages and operate over an extended -40 $^\circ$ C to +125 $^\circ$ C temperature range.

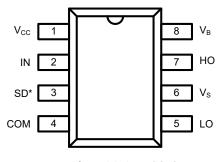


Applications

- Motor Controls
- DC-DC Converters
- AC-DC Inverters
- Motor Drives

Typical Application

Ordering Information

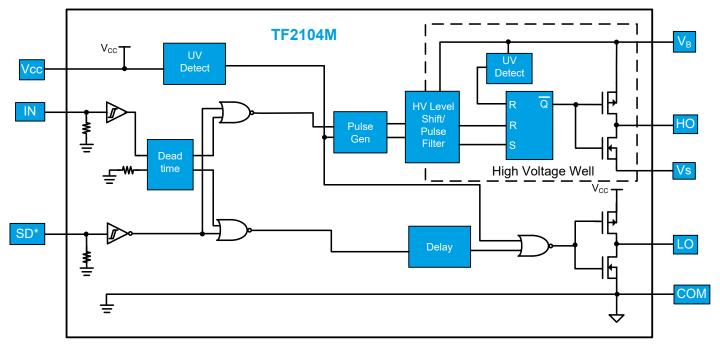

		Y	ear Year Week Week
PART NUMBER	PACKAGE	PACK / Qty	MARK
TF2104M-3AS	PDIP-8	Tube / 50	TF2104M Lot ID
TF2104M-TAU	SOIC-8(N)	Tube / 100	TF2104M
TF2104M-TAH	SOIC-8(N)	T&R / 2500	Lot ID

www.tfsemi.com

tfss TF Semiconductor Pin Diagrams

TF2104M

Half-Bridge Gate Driver


Top View: PDIP-8, SOIC-8

TF2104M

Pin Descriptions

PIN NAME	PIN NUMBER	PIN DESCRIPTION
V _{cc}	1	Logic and low side supply
IN	2	Logic input for high-side and low-side gate driver outputs (HO and LO), in phase with HO
SD*	3	Logic input for shutdown, enabled low
СОМ	4	Low-side and logic return
LO	5	Low-side gate drive output
V _s	6	High-side floating supply return
НО	7	High-side gate drive output
V _B	8	High-side floating supply

Functional Block Diagram

TF2104M

Half-Bridge Gate Driver

Absolute Maximum Ratings (NOTE1)

TF Semiconductor Solutions

V_{B} - High side floating supply voltage0.3V to +624V
V_s - High side floating supply offset voltageV _B -24V to V _B +0.3V
V_{HO} -Highside floating output voltageV _s -0.3V to V _B +0.3V
dV_s/dt - Offset supply voltage transient50 V/ns
dV_s/dt - Offset supply voltage transient50 V/ns

V _{cc} - Low-side fixed supply voltage	0.3V to +24V
V ₁₀ - Low-side output voltage	0.3VtoV _{cc} +0.3V
V _{IN} - Logic input voltage (IN and SD*)	

NOTE1 Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

P_D - Package power dissipation at $T_A \le 25 \text{ °C}$ SOIC-8 PDIP-8	
SOIC-8(N) Thermal Resistance (NOTE2)	
θ _{JA}	200 °C/W
PDIP-8 Thermal Resistance (NOTE2)	
θ _{IA}	125 °C/W
51	
T ₁ - Junction operating temperature	+150 °C
T ₁ - Lead Temperature (soldering, 10 seconds)	+300 °C
T _{stg} - Storage temerature	55 to 150 °C

NOTE2 Thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Recommended Operating Conditions

Symbol	Parameter	MIN	МАХ	Unit
V _B	High side floating supply absolute voltage	V _s + 10	V _s + 20	V
Vs	High side floating supply offset voltage	NOTE3	600	V
V _{HO}	High side floating output voltage	Vs	V _B	V
V _{cc}	Low side fixed supply voltage	10	20	V
V _{LO}	Low side output voltage	0	V _{cc}	V
V _{IN}	Logic input voltage (IN and SD*)	0	5	V
T _A	Ambient temperature	-40	125	°C

NOTE3 Logic operational for V_{c} of -5V to +600V. Logic state held for V_{c} of -5V to - V_{RC}

TF2104M

Half-Bridge Gate Driver

DCElectrical Characteristics (NOTE4)

 $V_{\text{BIAS}}(V_{\text{CC}},V_{\text{BS}})$ = 15V, T_{A} = 25 °C , unless otherwise specified.

Symbol	Parameter	Conditions	MIN	ТҮР	МАХ	Unit
V _{IH}	Logic "1" (IN) & Logic "0" (SD*) input voltage	$V_{cc} = 10V \text{ to } 20V$	2.5			
V _{IL}	Logic "0" (IN) & Logic "1" (SD*) input voltage	NOTE5			0.8	v
V _{OH}	High level output voltage, V _{BIAS} - V _O	$I_0 = 2mA$		0.05	0.2	
V _{OL}	Low level output voltage, V_{o}	$I_0 = 2mA$		0.02	0.1	
I _{LK}	Offset supply leakage current	VB = VS = 600V			50	
I _{BSQ}	Quiescent V _{BS} supply current	$V_{IN} = 0V \text{ or } 5V$		60	100	
I _{CCQ1}	Quiescent V _{cc} supply current	IN=0V or 5V, SD*=5V		350	500	μΑ
I _{CCQ2}	Quiescent V _{cc} supply current in shutdown	IN=0V or 5V, SD*=0V		590	750	
I _{IN+}	Logic "1" input bias current	$IN = 5V, SD^* = 0V$		3	10	
I _{IN-}	Logic "0" input bias current	IN = 0V, SD* = 5V			5	
V_{CCUV+}	V _{cc} supply under-voltage positive going threshold		8.0	8.9	9.8	
V _{CCUV-}	V _{cc} supply under-voltage negative going threshold		7.4	8.2	9.0	V
$V_{\text{BSUV+}}$	V _{BS} supply under-voltage positive going threshold		4.5	5.5	6.5	V
V _{BSUV-}	V _{BS} supply under-voltage negative going threshold		4.2	5.2	6.2	V
I _{O+}	Output high short circuit pulsed current	$V_0 = 0V$, PW $\leq 10 \ \mu s$	130	290		
I ₀₋	Output low short circuit pulsed current	$V_{o} = 15V$, PW $\leq 10 \ \mu s$	270	600		mA

NOTE4 The V_{IV} V_{TV} and I_{N} parameters are applicable to the two logic input pins: IN and SD*. The V_{0} and I_{0} parameters are applicable to the respective output pins: HO and LO

NOTE5 For optimal operation, it is recommended that the input pulse (to IN and SD*) should have an amplitude of 2.5V minimum with a pulse width of 840ns minimum

TF2104M

Half-Bridge Gate Driver

ACElectrical Characteristics

 $V_{_{BIAS}}(V_{_{CC}},V_{_{BS}})$ = 15V, $C_{_L}$ = 1000pF, and $T_{_A}$ = 25 °C , unless otherwise specified.

Symbol	Parameter	Conditions	MIN	ТҮР	МАХ	Unit
t _{on}	Turn-on propagation delay	$V_s = 0V$		680	820	
t _{off}	Turn-off propagation delay	$V_{s} = 600V$		150	220	
t _{sD}	Shutdown propagation delay			160	220	
t _{DM}	Delay matching, HS & LS turn-on/turn-off				60	ns
t _r	Turn-on rise time			70	170	
t _f	Turn-off fall time	$V_s = 0V$		35	90	
t _{DT}	Deadtime: t _{DT LO-HO} & t _{DT HO-LO}		300	420	650	

TF2104M

Half-Bridge Gate Driver

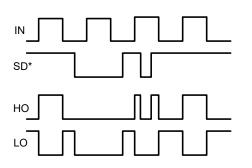


Figure 1. Input / Output Timing Diagram

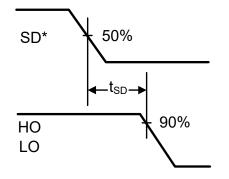
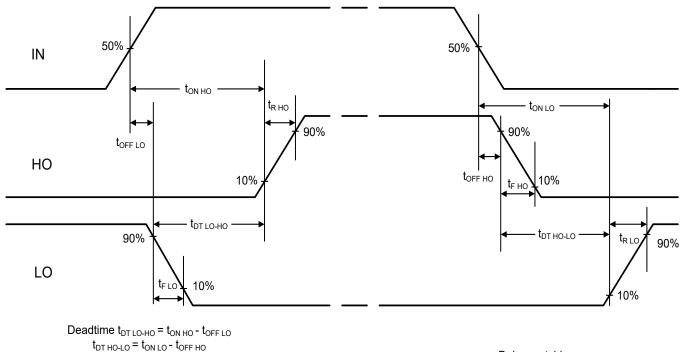
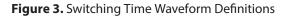
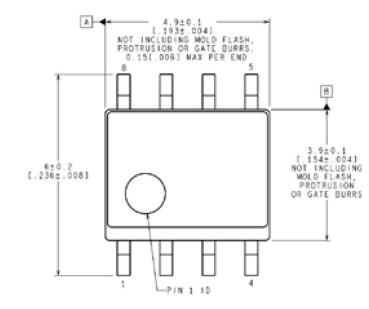
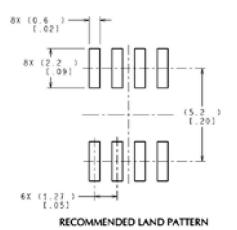




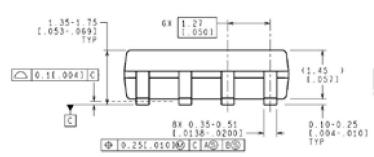
Figure 2. Shutdown Waveform Definition

Deadtime matching $t_{MDT} = t_{DT LO-HO} - t_{DT HO-LO}$

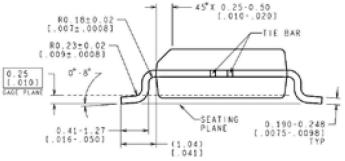
 $\begin{array}{l} \text{Delay matching} \\ t_{\text{DM OFF}} = t_{\text{OFF LO}} - t_{\text{OFF HO}} \\ t_{\text{DM ON}} = t_{\text{ON LO}} - t_{\text{ON HO}} \end{array}$




TF2104M

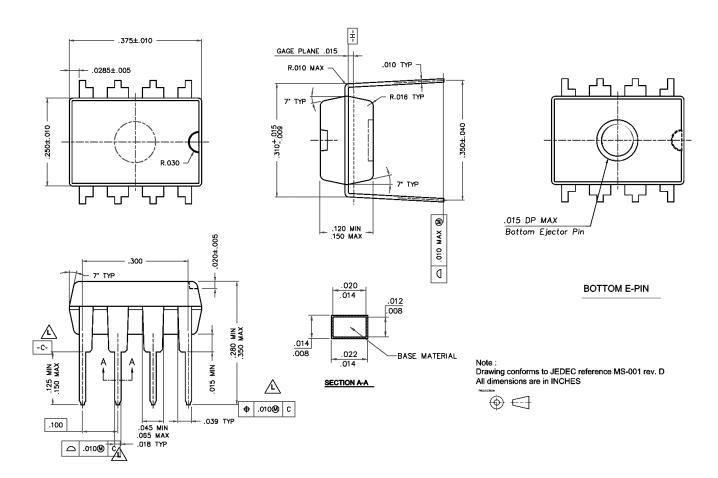

Half-Bridge Gate Driver

Please contact support@tfsemi.com for package availability.



NOTES: UNLESS OTHERWISE SPECIFIED

1. REFERENCE JEDEC REGISTRATION MS-012, VARIATION AA.


CONTROLLING DIMENSION IS MILLIMETER VALUES IN [] ARE INCHES DIMENSIONS IN [] FOR REFERENCE ONLY

Half-Bridge Gate Driver

TF Semiconductor Package Dimensions (PDIP-8)

Please contact support@tfsemi.com for package availability.

TF2104M

Half-Bridge Gate Driver

Revision History

Rev.	Change	Owner	Date
1.0	First release, Advance Info datasheet	Keith Spaulding	6/2/2016
1.1	VBS UVLO added to specifications	Keith Spaulding	6/23/2016
1.2	Corrected Functional Block diagram	Keith Spaulding	3/18/2019
1.3	Add Note 5	Duke Walton	7/18/2019

Important Notice

TF Semiconductor Solutions (TFSS) PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC TFSS PRODUCTS ARE SPECIFICALLY DESIGNATED BY TFSS FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF TFSS PRODUCTS WHICH TFSS HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

TFSS assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using TFSS products.

Resale of TFSS products or services with statements different from or beyond the parameters stated by TFSS for that product or service voids all express and any implied warranties for the associated TFSS product or service. TFSS is not responsible or liable for any such statements.

©2019 TFSS. All Rights Reserved. Information and data in this document are owned by TFSS wholly and may not be edited , reproduced, or redistributed in any way without the express written consent from TFSS.

For additional information please contact support@tfproducts.com or visit www.tfsemi.com