

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at <u>www.hestore.hu</u>.

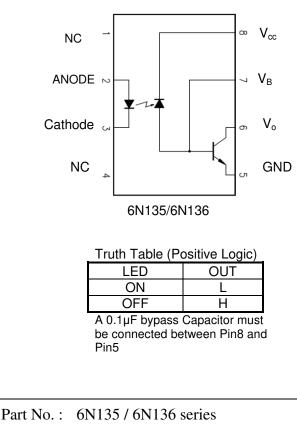
6N135 / 6N136 series Spec No.: DS70-2008-0032

Effective Date: 12/15/2009 Revision: -

BNS-OD-FC001/A4

LITE-ON Technology Corp. / Optoelectronics No.90,Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C. Tel: 886-2-2222-6181 Fax: 886-2-2221-1948 / 886-2-2221-0660 http://www.liteon.com/opto

Property of Lite-on Only


6N135, 6N136 Single Channel, High Speed Optocouplers

Description

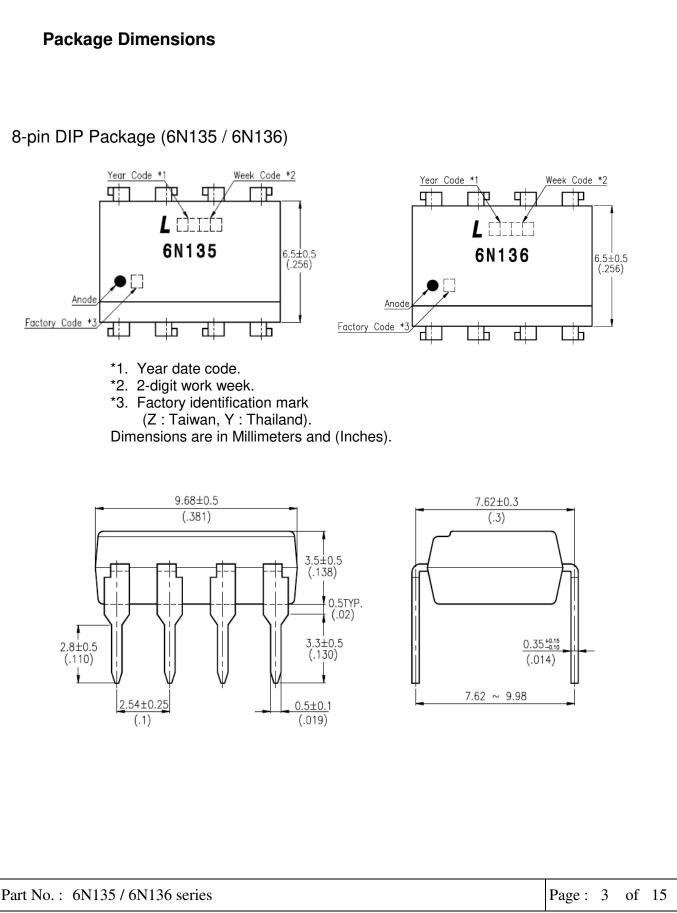
The 6N135/6 consists of a high efficient AlGaAs Light Emitting Diode and a high speed optical detector. This design provides excellent AC and DC isolation between the input and output sides of the Optocoupler. Connection for the bias of the photodiode improves the speed that of a conventional phototransistor coupler by reducing the base-collector capacitances. The internal shield ensures high common mode transient immunity. A guaranteed common mode transient immunity is up to 1KV/ μ sec.

Functional Diagram

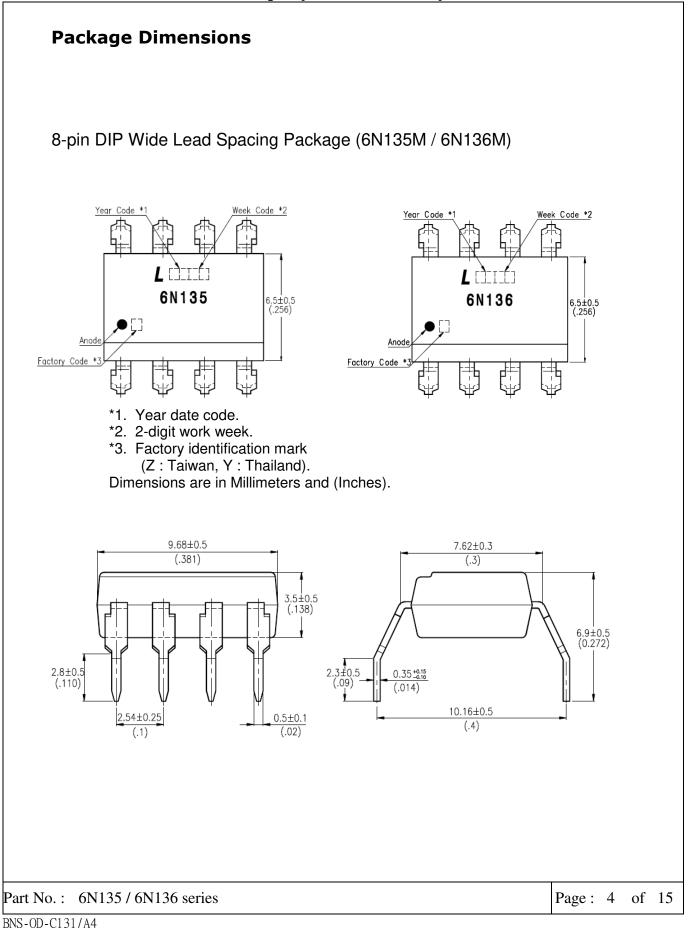
Features

- High speed 1MBd typical
- Available in Dual-in-line, Wide lead spacing, Surface mounting package.
- Storable output.
- UL, CSA approval

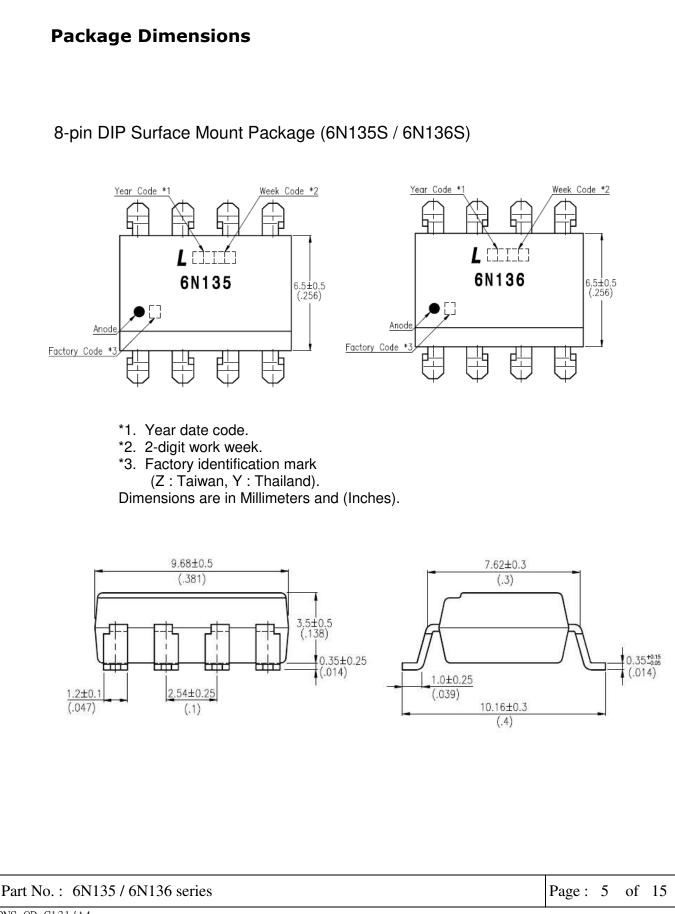
Application

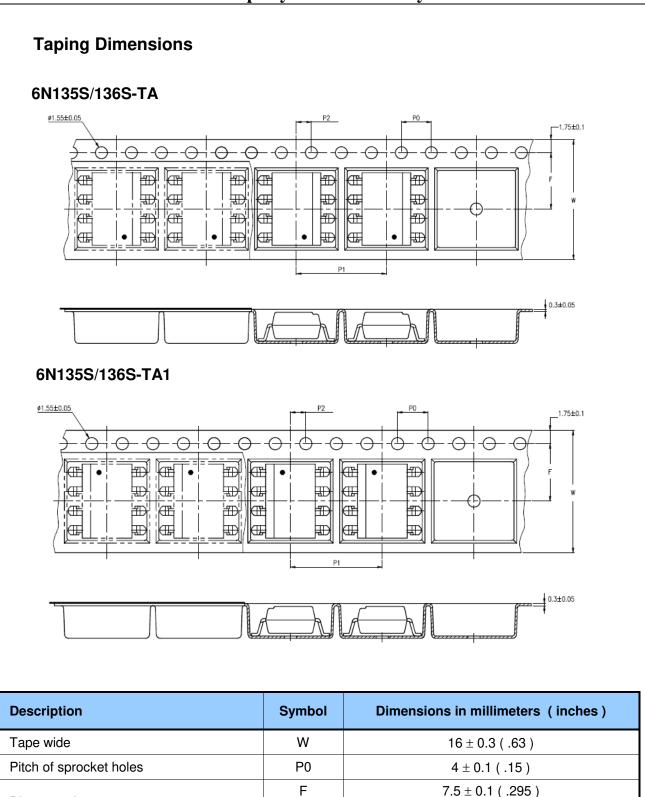

- High Voltage Isolation
- Isolation in line receivers
- Feedback element in switching mode power supplier
- Power transistor isolation in motor drives
- Interface between Microprocessor system, computer and their peripheral
- Replace pulse transformers.
- Replace slower optocoupler isolators.

Property of Lite-on Only


Ordering Information

		Minimum CMR					
Part	Option	dV/dt (V/µs)	V _{см} (V)	CTR	Remarks		
					Single Channel, DIP-8		
6N135	М			7	Single Channel, Wide Lead Spacing		
	S	1000	10		Single Channel, SMD-8		
		1000	10		Single Channel, DIP-8		
6N136	М			19	Single Channel, Wide Lead Spacing		
	S				Single Channel, SMD-8		


Property of Lite-on Only

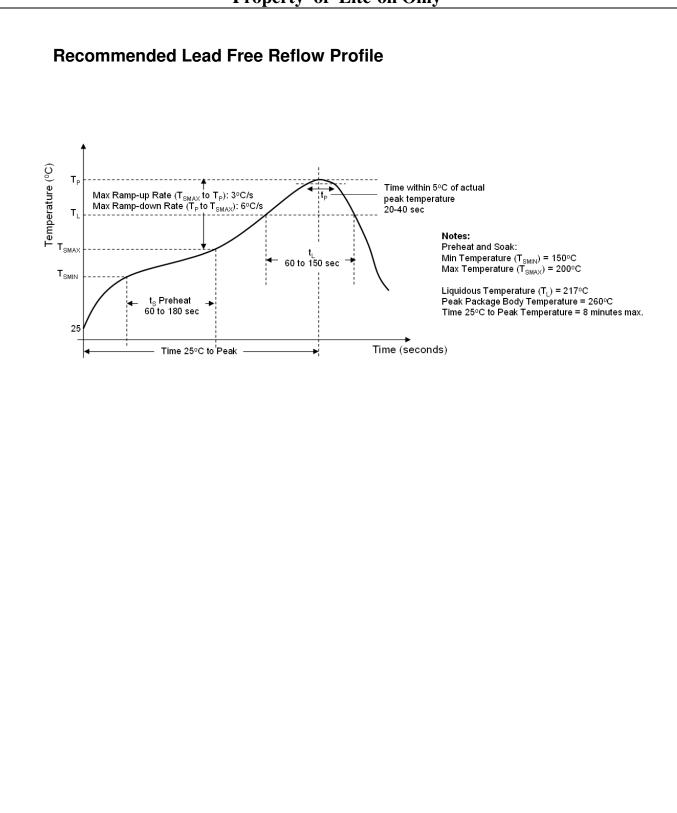

Property of Lite-on Only

Property of Lite-on Only

P2

P1

 2 ± 0.1 (.079)


 12 ± 0.1 (.472)

Distance of compartment

Part No.: 6N135 / 6N136 series

Distance of compartment to compartment

Property of Lite-on Only

Property of Lite-on Only

Absolute Maximum Ratings*1

Parameter	Symbol	Min	Мах	Units	Note
Storage Temperature	T _{ST}	-55	125	°C	
Operating Temperature	T _A	-40	85	°C	
Isolation Voltage	V _{ISO}	5000		V _{RMS}	
Supply Voltage	V _{CC}		15	V	
Lead Solder Temperature * 2			260	°C	2
Input					
Average Forward Input Current	I _F		25	mA	
Reverse Input Voltage	V _R		5	V	
Input Power Dissipation	Pi		45	mW	
Output					
Output Collector Current	Ι _ο		8	mA	
Output Collector Voltage	Vo	-0.5	20	V	
Output Collector Power Dissipation	Po		100	mW	

1. Ambient temperature = 25° C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

2.260°C for 10 seconds. Refer to Lead Free Reflow Profile.

Property of Lite-on Only

Electrical Specifications

Parameters	Test Condition	Symbol	Device	Min	Тур	Max	Units
Input	· · · · · · · · · · · · · · · · · · ·						
Input Forward Voltage	I _F =16mA, T _A =25℃	V_{F}	6N135		1.4	1.7	V
Input Reverse Voltage	I _R = 10μA	BV_R	6N136	5			V
Detector							
Current transfer ratio	I _F =16mA;Vcc=4.5V; T _A =25℃;Vo=0.4V	CTR	6N135	7	18	50	%
			6N136	19	24	50	
Logic low output voltage output voltage	I _F =16mA;Vcc=4.5V; I₀=1.1mA; T _A =25°C	N	6N135		0.18	0.4	V
	I _F =16mA;Vcc=4.5V; I₀=3mA; T _A =25℃	V _{OL}	6N136		0.25	0.4	
Logic high output current	$I_F=0mA$, Vo=Vcc=5.5V T _A =25°C		6N135 6N136			0.5	μΑ
	$I_F=0mA$, Vo=Vcc=15V T _A =25°C	I _{OH}				1	
Logic low supply current	I _F =16mA, V _o =open (Vcc=15V)	I _{ccL}	6N135 6N136		400		μ Α
Logic high supply current	$I_F=0mA, V_o=open;$ $T_A=25^{\circ}C$ (Vcc=15V)	I _{ccH}	6N135 6N136			1	μ Α

*All Typical at T_A=25° C

Property of Lite-on Only

Switching Specifications

 $T_A{=}0{\sim}70^\circ\!\mathrm{C}$, Vcc=5V, unless otherwise specified.

Dementer	Test Osndition	Oursehal	Dovice Min		T	Mari	
Parameter	Test Condition	Symbol	Device	Min	Тур	Мах	Units
Propagation Delay Time to Low Output Level	T _A =25°C (R _L =4.1KΩ, I _F =16mA)		6N135		0.09	1.5	$\mu{ m s}$
	T _A =25°C (R _L =1.9KΩ, I _F =16mA)	t _{PHL}	6N136		0.1	0.8	μ S
Propagation Delay Time to High Output Level	T _A =25°C (R _L =4.1KΩ, I _F =16mA)	t _{PLH}	6N135		0.8	1.5	μ s
	$T_A=25^{\circ}C$ (R _L =1.9K Ω , I _F =16mA)		6N136		0.4	0.8	μ s
Logic High Common Mode Transient Immunity	$I_{F}=0mA;V_{CM}=10Vp-p;$ $R_{L}=4.1K\Omega;T_{A}=25C$	CM _H	6N135	1			KV/µs
	$I_{F}=0mA;V_{CM}=10Vp-p;$ $R_{L}=1.9K\Omega;T_{A}=25C$		6N136	1			KV/µs
Logic Low Common Mode Transient Immunity	I _F =0mA;V _{CM} =10Vp-p; R _L =4.1KΩ; T _A =25C		6N135	1			KV/µs
	$I_{\text{F}}=0\text{mA};V_{\text{CM}}=10\text{Vp-p};\\R_{\text{L}}=1.9\text{K}\Omega;T_{\text{A}}=25\text{C}$	CM _L	6N136	1			KV/µs

*All Typical at $T_A = 25^{\circ}C$

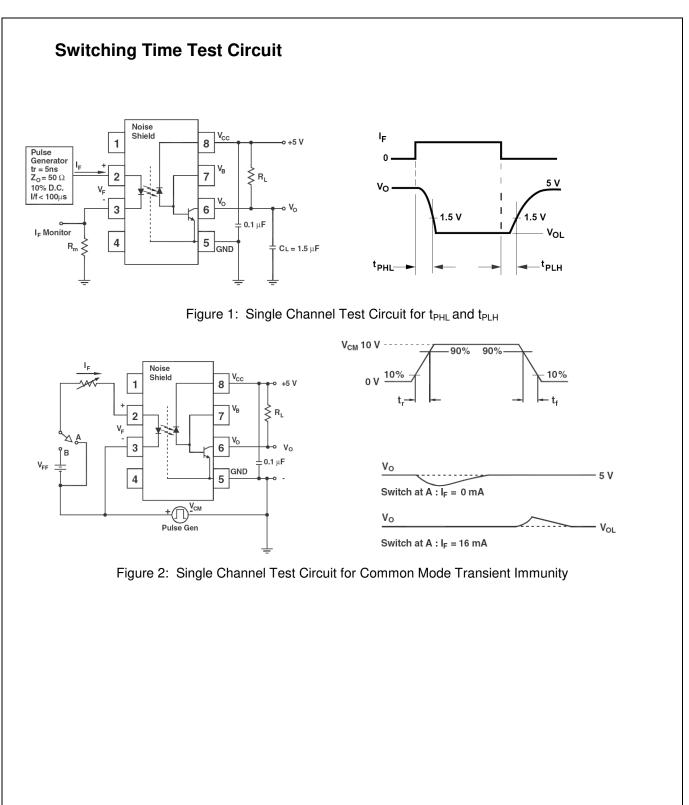
Property of Lite-on Only

Isolation Characteristics

Parameter	Test Condition	Symbol	Min	Тур	Max	Units
Input-Output Insulation Leakage Current	45% RH, t = 5s, $V_{I-O} = 3kV DC$, $T_A = 25^{\circ}C$	I _{I-O}			1.0	μA
Withstand Insulation Test Voltage	RH ≤ 50%, t = 1min, T _A = 25°C	V _{ISO}	5000			V _{RMS}
Input-Output Resistance	V _{I-O} = 500V DC	R _{I-O}		10 ¹²		Ω

*All Typical at T_A =25°C

Notes


1. A $0.1\mu F$ or bigger bypass capacitor for V_{CC} is needed as shown in Fig.1

2. Current Transfer Ratio is defined as the ratio of output collector current Io , to the forward LED input current IF, times 100.

3. The 1.9K Ω load represents 1TTL unit load of 1.6mA and the 5.6K Ω pull-up resistor.

4. The 4.1K Ω load represents 1LSTTL unit load of 0.36mA and the 6.1K Ω pull-up resistor.

Property of Lite-on Only

LITEON LITE-ON TECHNOLOGY CORPORATION Property of Lite-on Only

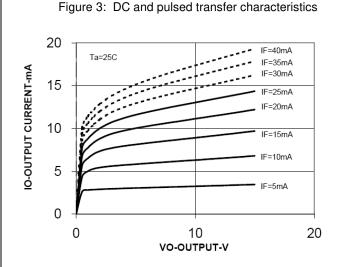


Figure 4: Input current vs. forward voltage

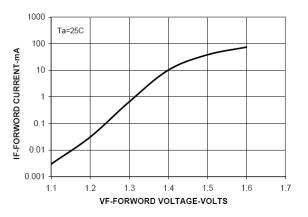
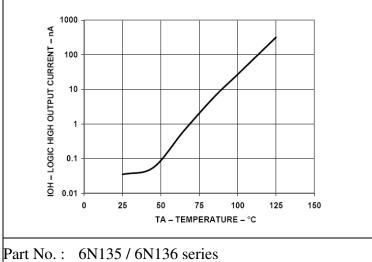



Figure 5: Logic high output current vs. temperature

BNS-OD-C131/A4

 $\begin{array}{c} 2\\ \text{rescaled} \\ \text{resc$

Figure 6: Current transfer ratio vs. input

Figure 7: Current transfer ratio vs. temperature

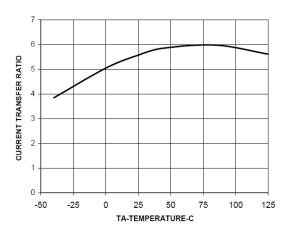
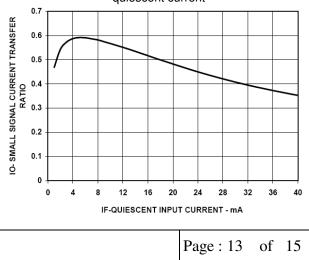



Figure 8: Small-signal current transfer ratio vs. quiescent current

Property of Lite-on Only

Characteristics Curves

Figure 9: Propagation delay time vs. temperature

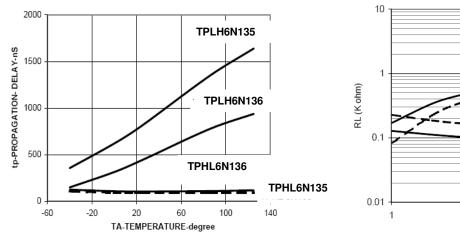
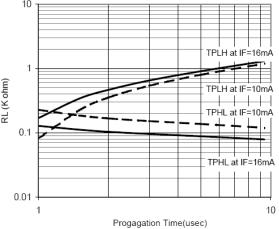



Figure 10: Propagation delay time vs. load resistance

Part No.: 6N135 / 6N136 series

Page: 14 of 15

BNS-OD-C131/A4

Property of Lite-on Only

Notice

Specifications of the products displayed herein are subject to change without notice.

The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical instrumentation and application. For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.