HESTORE.HU

EN: This Datasheet is presented by the manufacturer.
Please visit our website for pricing and availability at www.hestore.hu.

Features

■ Kernel：ARM32 Place Cortex ${ }^{\text {TM }}$－M3 Kernel

－highest 72 MHz The operating frequency，in the memory 0 Waiting period access
When up 1．25DMips／MHz（Dhrystone2．1）
－Single－cycle multiply and divide hardware
■ Memory
-64 KB or 128 KB program Flash
－20KB SRAM
－Clock，Reset and Power Management
－ 2.0 ～3．6 Volt power supply and I／O Pin
－Power on／off reset（ POR／PDR）Programmable voltage monitor
（PVD）
－ $4 \sim 16 \mathrm{MHz}$ Crystal Oscillator
－Built by the factory tuned 8 MHz High－speed RC Oscillator
－Embedded with calibration 40kHz Low speed RC Oscillator
－produce CPU Clock PLL
－With calibration function 32 kHz RTC Oscillator
■ 2 More 12 Place ADC ，1 $\mu \mathrm{s}$ Conversion time（up to 16 Input channels）
－Conversion range： 0 to 3.6 V
－Dual sample and hold function
－Temperature Sensor

－DMA ：

－ 7 aisle DMA Controller
－Supported peripherals：timers，ADC ，SPI ，I 2 C with USART
■ Low power consumption
－Sleep，shutdown and standby modes
－$V_{\text {bat }}$ for RTC Power supply and backup registers

－Up to 80 Fast I／O port
－26／37／51／80 More／／O Mouth，all I／O Port can be mapped to 16 A foreign

Ministry of interruption；can withstand almost all ports 5 V signal

－Debug mode

－Serial wire debug（ SWD）with JTAG interface
7 Timers
－ 3 More 16 Bit timers，each timer with up to 4 Inputs for

Capture／output compare／PWM And a pulse count or incremental encoder input channel
－ 1 More 16 Bit dead－time control and emergency brake，for motor control

PWM Advanced control timer
－ 2 A watchdog timer（separate window and type）
－System timer：twenty four Decrement the bit counter type
－Up to 9 Communication interfaces
－Up to 2 More I_{2} C Interface（support SMBus／PMBus）
－Up to 3 More USART Interface（support ISO7816 interface，LIN ，
IrDA An interface and modem control）
－Up to 2 More SPI interface（ 18M Bit／sec）
－CAN interface（ 2．0B initiative）
－USB 2．0 Full speed interface

■ CRC Calculation means， 96 Bit unique identification code chip

Device Comparison
CKS32F103x8（ B ）Product features and peripheral configuration

peripheral interface	CKS32F103C8／CB		CKS32F103RB	CKS32F103VB
Flash－K byte	64	128	128	128
SRAM－K byte	20		20	20
Timer General purpose	3		3	3
A Advanced Control	1		1	1
SPI	2		2	2
I2C	2		2	2
Communication Inteffacd ${ }^{\text {d }}$ SART	3		3	3
USB	1		1	1
CAN	1		1	1
GPIO Ports（channels）	37		51	80
12 Bit synchronization ADC	210		channels	216 channels
CPU frequency	$72 \mathrm{MHz}$			
Operating Voltage	Ambient temperature：$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$ Junction Temperature：$-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$			
Operating temperature				
Package	LQFP48		LQFP64	LQFP100

Ordering Information

table of Contents

1 ．Introduction ．． 1
2．Specifications 2
2．1 Outline ．． 2
2．1．1 ARM $_{\circledast}$ of Cortex ${ }^{T M}$－M3 The core and embedded flash memory and SRAM ．．． 2
2．1．2 Built－in flash memory ．． 2
2．1．3 CRC（ Cyclic Redundancy Check）calculation unit ．． 3
2．1．4 Internal SRAM 3
2．1．5 Nested vectored interrupt controller（ NVIC） 3
2．1．6 External Interrupt／Event Controller（ EXTI） ．． 3
2．1．7 Clock and start 3
2．1．8 Bootstrap mode ．． 4
2．1．9 Supply Scheme ．． 4
2．1．10 Power Monitor 4
2．1．11 Regulator 4
2．1．12 Low－power mode 5
2．1．13 DMA 5
2．1．14 RTC（ Real－time clock）and backup registers ．．．．．．．．．．． ．． 5
2．1．15 And Watchdog Timer ． 6
2．1．16 I2C bus 7
2．1．17 Universal Synchronous／Asynchronous Receiver Transmitter（ USART） ．． 7
2．1．18 Serial Peripheral Interface（ SPI） 7
2．1．19 Controller Area Network（ CAN） 8
2．1．20 Universal Serial Bus（USB） ． 8
2．1．21 GPIO ports（ GPIO） 8
2．1．22 ADC（ An analog／digital converter） ． 8
2．1．23 Temperature Sensor 9
2．1．24 Serial wire JTAG Debug port（ SWJ－DP） 9
3．Pin definitions 12
4．Memory map 20
5．Electrical Characteristics twenty one
5．1 Test Conditions ．twenty one
5．1．1 The minimum and maximum values twenty one
5．1．2．Typical values twenty one
5．1．3 Typical curve twenty one
5．1．4 Load Capacitance twenty one
5．1．5 Pin input voltage twenty two
5．1．6 Supply Scheme twenty three
5．1．7 Current consumption measurement twenty three
5．2 Absolute Maximum Ratings twenty four
5．3 Working conditions 25
5．3．1．General working conditions 25
5．3．2．When the power－up and power－down working conditions 25
5．3．3 Embedded reset and power control module characteristics ． 26
5．3．4 Built－in reference voltage 27
5．3．5 Supply current characteristics ． 27
5．3．6 External clock source characteristics 31
5．3．7 Characteristics of the internal clock source 35
5．3．8 PLL characteristic ．． 36
5．3．9 Reservoir characteristics 36
5．3．10 EMC characteristic 37
5．3．11 Absolute maximum（electrical sensitivity） 38
5．3．12 I／O Port characteristics 39
5．3．13 NRST Pin Characteristics 42
5．3．14 TIM Features of Timer 43
5．3．15 Communication Interface 43
5．3．16 CAN（ Controller Area Network）interface 48
5．3．17 12 Place ADC characteristic 48
5．3．18 Temperature sensor characteristics 52
6．Package Characteristics 53
6．1 Package mechanical data 53
6．2 Thermal Characteristics 57
6．2．1．Reference Documents 57
7．Model name 58
8．Version History 59

1 ．Introduction

In this paper，in the core subjects CKS32F103x8 with CKS32F103xB Standard MCU Device characteristics of the product．

CKS32F103x8 with CKS32F103xB Data sheet，must be combined with its associated reference manual reading together．related Cortex ${ }^{\mathrm{TM}}-\mathrm{M} 3$ The core of the relevant
information，please refer to＂Cortex－M3 Technical Reference Manual，＂available at ARM The company＇s website：
http：／／infocenter．arm．com／help／index．jsp？topic＝／com．arm．doc．ddi0337e／．

2．Specifications

CKS32F103x8 with CKS32F103xB Standard MCU Series of high－performance ARM® Cortex ${ }^{\text {TM }}$－M3 32 Bit RISC Core operating frequency is 72 MHz Built－in high－speed memory （up to 128K Bytes of flash memory and 20K Byte SRAM）Rich enhancements I／O And coupled to the two ports APB Bus peripherals．Contains 2 More 12 Place ADC ， 3 General purpose 16 Bit timers and 1 More PWM Timer It also includes standard and advanced communication interfaces：up to 2 More I2 C Interface and SPI interface， 3 More USART interface， 1 More USB Interface and

1 More CAN interface．

CKS32F103x8 with CKS32F103xB Standard MCU Series supply voltage 2.0 V to $3.6 \mathrm{~V},-40^{\circ} \mathrm{C} \mathrm{To}+85^{\circ} \mathrm{C}$ Operating temperature range and $-40^{\circ} \mathrm{C}$ To $+105^{\circ} \mathrm{C}$ The extended temperature range，a series of power－saving mode to ensure the required low－power applications．

CKS32F103x8 with CKS32F103xB Standard products include series from 36 Foot to 100 The foot 4 Different kinds of packages；depending on the package，the peripheral configuration of the device vary．The following gives a basic introduction to the series in all peripherals．

These rich peripheral configuration such that CKS32F103x8 with CKS32F103xB Standard Series microcontrollers can be used in a variety of applications：
－Motor drive and application contro
－Medical and handheld devices
－PC And gaming peripherals GPS platform
－Industrial applications：programmable logic controller（PLC），Converter，printer and scanner
－Alarm systems，video intercom and heating，ventilation and air conditioning systems

2．1 Outline

2．1．1 ARM © of Cortex ${ }^{\text {TM }}$－M3 The core and embedded flash memory and SRAM

ARM of Cortex ${ }^{T M}-M 3$ The processor is the latest generation of embedded ARM Processor，it is realized MCU The need to provide a low－cost platform，reduced pin count and reduced system power consumption，while delivering superior computing performance and advanced interrupt system response．

ARM of Cortex ${ }^{\text {TM }}-\mathrm{M} 3$ Yes 32 Bit RISC Processor，provides additional code efficiency，typically in the 8 with 16 We played a bit of space on the storage system ARM Core performance．

CKS32F103x8 with CKS32F103xB Standard series has a built－in ARM Core，so it is with all the ARM Tools and software compatibility．Error！Unrecognizable switching parameter．A functional block diagram of the series．

2．1．2 Built－in flash memory

64 K or 128 K Bytes of built－in flash memory for storing programs and data．

2．1．3 CRC（ Cyclic Redundancy Check）calculation unit

CRC（ Cyclic Redundancy Check）calculation unit uses a fixed generator polynomial from a 32 Generating a bit data word CRC code．In many applications，based on CRC Techniques are used to verify the consistency of the data transmission or storage．in EN／IEC 60335－1 The range of the standard，which provides a means of detecting errors of a flash memory，CRC The software calculating unit may calculate in real time for the signature，and the signature generated in comparison with the link and to generate a software．

2．1．4 Internal SRAM

20K Built－in bytes SRAM ，CPU Able to 0 Waiting period to access（read／write）．

2．1．5 Nested vectored interrupt controller（ NVIC）

CKS32F103x8 with CKS32F103xB Standard built－nested vectored interrupt controller that can handle up to 43 Maskable interrupt channels（not including 16 More Cortex
${ }^{\text {тм }}-\mathrm{M} 3$ The break）and 16 Priority levels．
－Tightly coupled NVIC It can achieve low latency interrupt handling
－Interrupt vector entry address directly into the kernel
－Tightly coupled NVIC interface
－Allow early treatment interruption
－Late arrival of a higher priority process interrupt
－Link function supports interrupt Tail
－Processor state automatically saved
－Automatic recovery upon return，at no additional cost to the command module with minimal disruption delay in providing flexible interrupt management functions．

2．1．6 External Interrupt／Event Controller（ EXTI）

External Interrupt／Event Controller included 19 An edge detector，for generating an interrupt／event request．Each interrupt may be independently configure its trigger event （rising or falling edge or both edges），and can be individually shielded；a pending register maintained by the status of all interrupt requests．EXTI Less than the internal width can be detected APB2 Pulse of the clock period．Up to 80 General purpose I／O Port is connected to 16 External interrupt lines．

2．1．7 Clock and start

The system clock is carried out at startup，the internal reset 8 MHz of RC Oscillator is selected as the default CPU Clock，can then select the exterior and having a failure detection $4 \sim 16 \mathrm{MHz}$ Clock；the external clock when the failure is detected，it will be isolated，the system will automatically switch to the internal RC Oscillator，if the interrupt is enabled the software may receive a corresponding interrupt．Similarly，when necessary，to take PLL Clock completely

Interrupt management（such as when using the external oscillator during a failure）．

Prescaler for configuring a plurality of AHB Frequency，high－speed APB（APB2）And low－speed APB（APB1）region．AHB And high－speed APB The highest frequency is 72MHz Low speed APB The highest frequency of 36 MHz ．Reference FIG． 2 As shown in a block diagram of a driving clock．

2．1．8 Bootstrap mode

At startup，the bootstrap pin by a self－lifting choice of three modes：
－Bootstrap program from the flash memory
－Bootstrap from the system memory
－From the inside SRAM Bootstrap bootstrap loader（ Bootloader）Stored in the system memory，through USART1 Flash
reprogramming．

2．1．9 Supply Scheme

－$\quad V_{D D}=2.0 \sim 3.6 V: V_{D D} P i n I / O$ Pin and the internal power supply voltage regulator．
－$\quad V_{S S A}, V_{\text {dDA }}=2.0 \sim 3.6 \mathrm{~V}$ ：for $A D C$ ，Reset module，RC And oscillator PLL The analog section provides power．use ADC Time，$V_{\text {DDA }}$ Not less than 2.4 V ． $\mathrm{V}_{\text {DDA }}$ with $\mathrm{V}_{\text {ssA }}$ It must be connected respectively to $\mathrm{V}_{\text {DD }}$ with $\mathrm{V}_{\text {ss }}$ ．
－$\quad V_{\text {bat }}=1.8 \sim 3.6 \mathrm{~V}$ ：When you close $V_{\text {do }}$ When（the internal power source through the switch）of RTC ，external 32kHz Power oscillator and backup registers．

For more information on how to connect the power pins，see FIG． 10 Supply Scheme．

2．1．10 Power Monitor

This product incorporates an internal power－on reset（POR）／Brown－out reset（PDR）Circuit，the circuit is always active to ensure power supply system in more than 2 V Work； when $V_{\text {do }}$ Below the set threshold（ $\mathrm{V}_{\text {POR／PDR）}}$ When the device is set to the reset state，without having to use an external reset circuit．There is also a programmable device voltage monitor （ PVD）That monitors $\mathrm{V}_{\mathrm{dD}} / \mathrm{V}_{\mathrm{dDA}}$ Power supply and with the threshold $\mathrm{V}_{\text {pvd }}$ Comparison，when V_{do} Below or above the threshold $\mathrm{V}_{\text {pvo }}$ When an interrupt，the interrupt handler can issue a warning or a microcontroller into a safe mode．PVD Function need to open a program．on Vpor／PDR with VPVD Value reference table 8 ．

2．1．11 Regulator

The regulator has three operating modes：master mode（MR）Low－power mode（ LPR）And a shutdown mode
－Master mode（MR）Operation for normal operation
－Low－power mode（ LPR）For CPU Shutdown mode
－Shutdown mode for CPU Standby mode：the output of the regulator is high impedance state，the core power supply circuit is cut，consumption state at zero voltage regulator（but registers and SRAM The contents will be lost）

The regulator after reset is always active，closed in standby mode in a high impedance output．

2．1．12 Low－power mode

CKS32F103x8 with CKS32F103xB Standard product supports three low－power modes，you can achieve the best balance between the requirements of low－power，short start－up time and a variety of wake－up events．
－Sleep Mode

In sleep mode，only MCU Stop，all peripherals can wake up in a working state in the event of interruption／event MCU ．
－Shutdown Mode
In keeping SRAM And the case where the register contents are not lost，shutdown mode may achieve the lowest power consumption．In shutdown mode，stop all internal 1.5 V Part of the power supply，PLL ，HSI of RC And oscillator HSE The crystal oscillator is turned off，the regulator may be placed in the normal mode or the low power mode．

Can be configured by any of a EXTI A signal to wake up the microcontroller from the shutdown mode，EXTI Signal can be 16 External I／O One of mouth，PVD Output，RTC Alarm clock or USB The wake－up signal．
－Standby mode

In the standby mode you can achieve the lowest power consumption．The internal voltage regulator is turned off，and therefore all internal 1.5 V The power supply portion is cut off；PLL ，HSI of RC And oscillator HSE The crystal oscillator is also turned off；into standby mode，SRAM And register content will disappear，but the contents of the register remain a backup，standby circuit still work．

Exit from standby mode conditions are：NRST The external reset signal，IWDG Reset WKUP A pin on the rising edge or RTC When the alarm occurs．

NOTE：When entering the stop or standby mode，RTC ，IWDG And the corresponding clock is not stopped．

2．1．13 DMA

flexible 7 General road DMA You can manage memory to memory，and the memory device to the memory to the data transmission device；DMA The controller supports the ring buffer management，interrupt controller to avoid the transmission reaches the end of the buffer generated．

Each channel has a dedicated hardware DMA Request logic，and each channel can be triggered by software；source and destination addresses of the length of the transmission， the transmission can be set independently by software．

DMA The main peripherals can be used：SPI ，$I_{2} C$ ，USART And general，basic and advanced control timer TIMx with ADC ．

2．1．14 RTC（ Real－time clock）and backup registers

RTC And backup power supply through a switch registers，in $V_{\text {do }}$ When the switch selects the active $V_{\text {do }}$ Otherwise，the $V_{\text {bat }}$ Pin power supply．Backup registers（ 10 More 16 Bit registers）can be used in a closed Vod When，save 20 User application data bytes．RTC And backup registers are not reset the system reset or power source；when waking from standby mode，will not be reset．

Real－time clock counter with a set of continuous operation，calendar clock function can be provided by appropriate software，also has alarm interrupt and periodic interrupt function．RTC A clock driver may use external crystal 32.768 kHz Oscillator，low power internal RC Oscillator or an external clock by a high speed 128 Divider．Internal low－power RC A typical oscillator frequency 40 kHz ．To compensate for the deviation of the natural lens，can output a 512 Hz The signal RTC Clock calibration．RTC Have a 32 Bit programmable counter，the comparison registers

To be measured over time．There is a 20 Bit prescaler for time base clock，the clock for the default 32.768 kHz ，It will generate a 1 Seconds long time base．

2．1．15 And Watchdog Timer

CKS32F103x8 with CKS32F103xB Standard products include 1 An advanced control timers， 3 General timer，and 2
And a watchdog timer 1 A system timer．

The following table compares the functionality of advanced control timers，general timer and basic timers：

Advanced control timer（ TIM1）

Advanced control timer（ TIM1）It can be seen to be assigned 6 Three－phase channels PWM Generator，having a complementary dead band inserted

PWM Output can also be treated as a complete general－purpose timer． 4 Independent channels can be used：
－Input Capture
－Output Compare
－produce PWM（ Edge or center aligned mode）
－Configured to output a single pulse 16 When the bit standard timers，it TIMx Timers have the same functionality．Configured to 16 Place PWM When the generator having a full modulation capability（ 0 to 100% ）

In debug mode，the counter can be frozen，while PWM Output is disabled，thereby disconnecting switch controlled by the output of these．Many features are standard TIM Same timer，the internal structure is the same，so the advanced control timer via the timer function and links TIM Timer co－operation，providing synchronous or event link function．

General－purpose timers（ TIMx）

CKS32F103x8 with CKS32F103xB Standard products，built up to 3 A standard timer can be run simultaneously（ TIM2 ，
TIM3 with TIM4）．Each timer has a 16 Incrementing bit automatic loading／down counter，a 16 Bit prescaler and 4 Independent channels，each channel can be used as input capture，output compare，PWM And a one－pulse mode output，the maximum package configuration can provide up to 12 Input capture，output compare or PWM aisle．

They can also work together by linking a timer function and advanced control timers，providing synchronous or event link function．In debug mode，the counter can be frozen． Any standard timer can be used to generate PWM Output．Each timer has independent DMA Request mechanism．

These timers also capable of processing signals of the incremental encoder，can handle 1 to 3 A digital output Hall sensor．

Independent watchdog

Independent watchdog is based on a 12 Bit down counter and a 8 Bit prescaler，which consists of a separate internal 40 kHz of RC

A clock oscillator；for this RC Independent of the master clock oscillator，it can operate in shutdown mode and a standby mode．It can be used as a watchdog reset the entire
system when a problem occurs，or as a time－out timer provides free management application．It can be configured by the option byte to start a software or hardware watchdog．In debug mode，the counter can be frozen．

Window Watchdog

Window contains a watchdog 7 Bits can be configured as free－running down counter．When used as a watchdog，reset the entire system if a problem occurs．It is driven by the master clock，having an early warning interrupt function；in debug mode，the counter can be frozen

Timer－based system

This timer can be dedicated to real－time operating system，it can use as a standard down counter．It has the following characteristics：
－twenty four Bit down counter
－Auto reload function
－When the counter 0 When the system generates a maskable interrupt
－Programmable clock source

2．1．16 I2C bus

Up to 2 More I_{2} C Bus interface that operates in multi－master mode or slave mode，supports standard mode and fast mode．
I_{2} C Interface Support 7 Position or 10 Bit addressing， 7 Bit address from the dual mode addressing．Built－in hardware CRC Generator／checker．The interface can be used DMA Operation and Support SMBus bus 2．0 Version／PMBus bus．

2．1．17 Universal Synchronous／Asynchronous Receiver Transmitter（ USART）

USART1 Interface communication speed up $4.5 \mathrm{Mb} / \mathrm{s}$ Other interface communication speed up Mb／s．USART Interfaces with hardware CTS with RTS Signal management，support IrDA SIR ENDEC Transmission codec compatible ISO7816 Smart cards and provide LIN Master／slave function． all USART Interface can be used DMA operating．

2．1．18 Serial Peripheral Interface（ SPI）

Up to 2 More SPI Interface may be configured to communicate reachable from master mode or rate mode，half－duplex and full－duplex $18 \mathrm{Mb} / \mathrm{s} .3 \mathrm{Generating}$ bit prescaler 8 Species main mode frequency，may be configured to 8 Position or 16 Bit data frame format．hardware CRC Generation／verification support basic SD Card and MMC mode．
all SPI Interface can be used DMA operating．

2．1．19 Controller Area Network（ CAN）

CAN Interface specification compatible 2.0 A with 2.0 B （Initiative），bit rate up $1 \mathrm{Mb} / \mathrm{s}$ ．It can receive and send 11 Standard frame bit identifier may be transmitted and received 29 Extended frame bit identifier．have 3 E－mail and transmit 2 Receive FIFO， 3 level 14 An adjustable filter．

2．1．20 Universal Serial Bus（ USB）

CKS32F103x8 with CKS32F103xB Standard products，built a full－speed compatible USB The device controller，follow full speed USB device（ $12 \mathrm{Mb} / \mathrm{s}$ ）Standard，the endpoint may be a software configuration，having a standby／wake－up function．USB Dedicated 48MHz Internal master clock PLL Produced directly（the clock source must be a HSE Crystal Oscillator）．

2．1．21 GPIO ports（ GPIO）

Each GPIO Pins can be configured by software to output（open－drain or push－pull），input（pull－down or pull－up or floating）or peripheral functions of the port．most GPIO Pins are shared with multiplexed analog or digital peripherals．In addition to having an analog input，all GPIO Pins allow a large current．

In case of need，I／O Pin through a specific peripheral function lock operation，to avoid I／O Unexpected register write operation．in APB2 Up I／O Flip up the foot speed 18 MHz ．

2．1．22 ADC（ An analog／digital converter）

CKS32F103x8 with CKS32F103xB Embedded Standard Products 2 More 12 Bit analog／digital converter（ADC）Each ADC Share up to 16 External channels，enabling a single
conversion or scan conversion mode．In scan mode，it can be switched on automatically in a selected group of analog input pins．

ADC Other logic functions on the interface comprising：
－Synchronous sample and hold
－CROSS sample and hold
－A single sample
ADC can use DMA operating．

The watchdog can be very accurately simulate the way monitoring，multiple or all of the selected channel，when the monitored signal exceeds the preset threshold，the analog

Abstract

watchdog interrupt is generated．

By the standard Timer（ TIMx）And advanced control timer（ TIM1）Event occurs，it is possible to cascade inside respectively ADC Trigger and trigger the beginning of the
injection，the application can AD Conversion and clock synchronization．

2．1．23 Temperature Sensor

The temperature sensor generates a voltage varies linearly with temperature，in the range of conversion $2 \mathrm{~V}<\mathrm{V}$ dDA $<3.6 \mathrm{~V}$ between．The temperature sensor is connected to the inside ADC12＿IN16 The input channel，for converting the sensor output to a digital value

2．1．24 Serial wire JTAG Debug port（ SWJ－DP）

Embedded ARM of SWJ－DP Interface，which is a combination of JTAG And serial wire debug interface，serial wire debug interface or JTAG Connection interface．JTAG of TMS with TCK Signals and SWDIO with SWCLK Common pin，TMS A particular signal sequence for feet JTAG－DP with SW－DP Switch between．

Map 1 System block diagram
1．Operating temperature：－ $40^{\circ} \mathrm{C}$ To $+105^{\circ} \mathrm{C}$ ，The junction temperature of $125^{\circ} \mathrm{C}$ ．
2．AF ：As a peripheral functions of the foot $1 / \mathrm{O}$ port

Map 2 Clock tree
1．when HSI As a PLL When the input clock，the maximum clock frequency of the system can only reach 64 MHz ．
2．When USB When the function，you must also use HSE with PLL，CPU The frequency must be 48 MHz or 72 MHz ．
3．When you need ADC Sampling time 1μ s Time，APB2 Must be set $14 \mathrm{MHz}, 28 \mathrm{MHz}$ or 56 MHz ．

3．Pin definitions

Map 4CKS32F103xx Standard LQFP64 Pinout

Map 6CKS32F103xx Standard QFN36 Pinout

Pin Number				Pin name of the class	Electrí	$\bar{\circ}$ ally fally level 즈N	Main features（3） （ Reset）		
$\begin{aligned} & \boxed{0} \\ & 0 \\ & 0 \\ & \infty \end{aligned}$		$\begin{aligned} & \overline{0} \\ & \stackrel{7}{0} \\ & \stackrel{\rightharpoonup}{8} \end{aligned}$	$\begin{aligned} & 0 \\ & \sum_{\omega}^{0} \\ & \hline \end{aligned}$					Optional multiplexing function	
－	－	1	－	PE2	$1 / 0 \mathrm{~F}$		PE2	TRACECK	
－	－	2	－	PE3	$1 / 0$ F		PE3	TRACEDO	
－	－	3	－	PE4	$1 / 0$ F		PE4	TRACED1	
－	－	4	－	PE5	$1 / 0$ F		PE5	TRACED2	
－	－	5	－	PE6	$1 / 0$ F		PE6	TRACED3	
1	1	6	－	V bat	S		$V{ }_{\text {bat }}$		
2	2	7	－	PC13－TAMPER－ RTC（4）	$1 / 0$		PC13	TAMPER－RTC	
3	3	8	－	$\begin{gathered} \text { PC14- } \\ \text { OSC32_IN (4) } \end{gathered}$	$1 / 0$		PC14	OSC32＿IN	
4	4	9	－	PC15－ OSC32＿OUT（4）	$1 / 0$		PC15	OSC32＿OUT	
－	－	10	－	Vss＿5	s		yss		
－	－	11	－	Vod＿5	S		VDD＿5		
5	5	12	2	OSC＿IN	1		OCS＿IN		PDO（7）
6	6	13	3	OSC＿OUT	0	－	OSC＿OUT		PD1（7）
7	7	14	4	NRST	$1 / 0$		NRST		
－	8	15	－	PCO	$1 / 0$	1	PC0	ADC12＿IN10	
－	9	16	－	PC1	110		PC1	ADC12＿IN11	
－	10	17	－	2	$1 / 0$		PC2	ADC12＿IN12	
－	11	18	－	PC3	$1 / 0$		PC3	ADC12＿IN13	
8	12	19	5	V ssA	S		V ssa		
－	－	20	－	Vref－	S		Vref－		
－	－	twenty on	e－	Vref＋	S		Vref＋		
9	13	twenty two	－ 6	V doa	S		V dDA		
10	14	twenty thr	ee 7	PAO－WKUP	$1 / 0$		PAO	WKUP／USART2＿C $\begin{aligned} & \text { TS (6)/ADC12_IN0 / } \\ & \text { TIM2_CH1_ETR (6) } \end{aligned}$	
11	15	twenty four	ur 8	PA1	$1 / 0$		PA1	$\begin{aligned} & \text { USART2_RTS (6) } \\ & \text { ADC12_IN1 / } \\ & \text { TIM2_CH2 (6) } \end{aligned}$	
12	16	25	9	PA2	$1 / 0$		PA2	$\begin{gathered} \text { USART2_TX (6)/AD } \\ \text { C12_IN2 / TIM2_CH } \\ \text { 3(6) } \end{gathered}$	
13	17	26	10	PA3	$1 / 0$		PA3	USART2＿RX（6）／AD C12＿IN3／TIM2＿CH	

Pin Number				Pin name of the class	$\stackrel{\text { Electriq }}{\ni}$	亏 ally $\stackrel{\text { level }}{\text { I }}$	Main features（3） （Reset）	Optional multiplexing function	
$\begin{aligned} & \Gamma \\ & 0 \\ & 0 \\ & \infty \\ & \hline \infty \end{aligned}$		$\begin{aligned} & \text { D} \\ & \stackrel{\eta}{0} \\ & \stackrel{\rightharpoonup}{8} \end{aligned}$	$\stackrel{\text { p }}{\substack{\Pi \\ \hline}}$						
								4 （6）	
－	18	27	－	Vss＿4	s		Vss＿4		
－	19	28	－	Vod＿4	S		Vod＿4		
14	20	29	11	PA4	$1 / 0$		PA4	SPI1＿NSS（6）／ USART2＿CK（6）। ADC12＿IN4	
15	twenty	ne 30	12	PA5	$1 / 0$		PA5	$\begin{aligned} & \text { SPI1_SCK (6)। } \\ & \text { ADC12_IN5 } \end{aligned}$	
16	twenty	vo 31	13	PA6	$1 / 0$		PA6	$\begin{aligned} & \text { SPI1_MISO (6)/ } \\ & \text { ADC12_IN6 / } \\ & \text { TIM3_CH1 (6) } \end{aligned}$	TIM1＿BKIN
17	twenty	hree32	14	PA7	$1 / 0$			$\begin{aligned} & \text { SPI1_MOSI (6)/ } \\ & \text { ADC12_IN7 / } \\ & \text { TIM3_CH2 (6) } \end{aligned}$	TIMI＿CHIN
－	twenty fo	pur 33	－	PC4	$1 / 0$		PC4	ADC12＿IN14	
－	25	34	－	PC5	110		PC5	ADC12＿IN15	
18	26	35	15	PB0	0		PB0	ADC12＿IN8／ TIM3＿CH3（6）	TIM1＿CH2N
19	27	36	16	PB1			PB1	ADC12＿IN9／ TIM3＿CH4（6）	TIM1＿CH3N
20	28	37	17	PB2	I／O F ${ }^{\text {T }}$		$\begin{gathered} \text { PB2 / } \\ \text { BOOT1 } \end{gathered}$		
－	－	38	－	PE7	$1 / 0{ }^{\top}$	T	PE7		TIM1＿ETR
－	－	39	－	PE8	$1 / \mathrm{OFT}$	T	PE8		TIM1＿CH1N
－	－	40	－	PE9	I／O F ${ }^{\top}$	T	PE9		TIM1＿CH1
－	－	41	－	PE10	$1 / 0$ F	T	PE10		TIM1＿CH2N
－	－	42	－	PE11	$1 / 0$ F		PE11		TIM1＿CH2
－	－	43	－	PE12	$1 / 0$ F		PE12		TIM1＿CH3N
－	－	44	－	PE13	1／0		PE13		TIM1＿CH3
－	－	45	－	PE14	1／0		PE14		TIM1＿CH4
－	－	46	－	PE15	$1 / 0$ F		PE15		TIM1＿BKIN
twenty	pne 29	47	－	PB10	$1 / 0$ F		PB10	I2C2＿SCL／ USART3＿TX（6）	TIM2＿CH3
twenty	wo 30	48	－	PB11	$1 / 0$		PB11	I2C2＿SDA／ USART3＿RX（6）	TIM2＿CH4
twenty	hree31	49	18	Vss＿1	s		Vss＿1		
twenty	our 32	50	19	Vod＿1	s		Vod＿1		

Pin Number				Pin name of the class	$\stackrel{\text { Electri4ally }}{\Xi}$	Main features（3） （ Reset）	Optional multiplexing function	
$\begin{aligned} & \Gamma \\ & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$$	$\begin{aligned} & \text { Do } \\ & \stackrel{1}{0} \\ & \stackrel{\rightharpoonup}{8} \end{aligned}$	$\stackrel{0}{\text { ® }}$					
34	46	72	25	PA13	$1 / 0{ }^{\text {P }}$	JTMS／SWD IO		PA13
－	－	73	－	not connected				
35	47	74	26	V ss＿2	s	V ss＿2		
36	48	75	27	Vod＿2	S	Vod＿2		
37	49	76	28	PA14	$1 / 0{ }^{\text {F }}$	JTCK／ SWCLK		PA14
38	50	77	29	PA15	I／O FT	JTDI		TIM2＿CH1＿ETR PA15／SPI1＿NSS
－	51	78	－	PC10	$1 / 0{ }^{\text {F }}$	PC10		USART3＿TX
－	52	79	－	PC11	I／O FT	PC11		USART3＿RX
－	53	80	－	PC12	$1 / 0{ }^{\text {P }}$	PC12		USART3＿CK
		81	2	PDO	$1 / 0{ }^{\text {F }}$	SCIN（8）		CANRX
		82	3	PD1	I / O FT OSC	UT (8)		CANTX
－	54	83	－	PD2	$1 / 0 \mathrm{FT}$	PD2	TIM3＿ETR	
－	－	84	－	PD3	$1 / 0 \mathrm{FT}$	PD3		USART2＿CTS
－	－	85	－	PD4	1／0月T	PD4		USART2＿RTS
－	－	86	－	PD5	$1 / 0 \mathrm{~F}^{\top}$	PD5		USART2＿TX
－	－	87	－		－1／0 ${ }^{\text {T }}$	PD6		USART2＿RX
－	－	88	－	PD7	1／O FT	PD7		USART2＿CK
39	55	89	30	PB3	I／O FT	JTDO		PB3／TRACESWO TIM2＿CH2／ SPI1＿SCK
40	56	90	31	PB4	I／O FT	JNTRST		PB4／TIM3＿CH1／ SPI1＿MISO
41	57	91	32	PB5	$1 / 0$	PB5	I2C1＿SMBAI	TIM3＿CH2／ SPI1＿MOSI
42	58	92	33	PB6	I／O FT	PB6	$\begin{aligned} & \text { I2C1_SCL (6)/ } \\ & \text { TIM4_CH1 (6) } \end{aligned}$	USART1＿TX
43	59	93	34	PB7	I／O FT	PB7	$\begin{aligned} & \text { I2C1_SDA (6)। } \\ & \text { TIM4_CH2 (6) } \end{aligned}$	USART1＿RX
44	60	94	35	BOOT0	1	BOOT0		
45	61	95	－	PB8	$1 / 0{ }^{\text {P }}$	PB8	TIM4＿CH3（6）	I2C1＿SCL／ CANRX
46	62	96	－	P89	$1 / 0{ }^{\text {FT}}$	P89	TIM4＿CH4（6）	I2C1＿SDA／ CANTX

Pin Number				Pin name of the class	$\stackrel{\text { Electrí }}{\cong}$	亏 ally $\stackrel{\text { level }}{N}$	Main features（3） （Reset）	Optional multiplexing function	
5 0 0 0 ∞		$\begin{aligned} & \overline{0} \\ & \frac{1}{0} \\ & \stackrel{\rightharpoonup}{8} \end{aligned}$	$\begin{aligned} & 0 \\ & \sum_{\omega}^{0} \\ & \hline \end{aligned}$						
－	－	97	－	PEO	$1 / 0$ F		PE0	TIM4＿ETR	
－	－	98	－	PE1	$1 / 0$ F		PE1		
47	63	99	36	V ss＿3	S		V ss＿3		
48	64	100	1	Vod＿3	S		Vdd＿3		

1．I＝Input，O＝Output，S＝power supply

2．FT ：5V Voltage tolerance
3．PC13 ，PC14 with PC15 Pin power through the power switch，and this power switch can only absorb a limited current（ 3 mA ）．So these three pins as
The following restrictions apply when output pin：Only one pin can be used as output at the same time，as an output pin can only work in 2 MHz Mode，the maximum drive load for 30 pF ，And not as a current source（e．g．，driver LED）．

4．These first pins in the backup area in the main menu on power state，even after the reset，the state of these pins is controlled by the backup zone register（the register
Register will not be reset system master reset）．About how to control them IO Specific information mouth，please refer to CKS32F103x8 with CKS32F103xB Reference book
Battery backup area，and BKP Relevant sections of the register．

5．Such multiplexing function can be configured by software to the other pin（if the corresponding models this pin package），details refer to CKS32F103x8 with CKS32F103xB Reference Manual multiplexing function I／O Chapters and debug settings section，

6．QFN36 Pins of the package 2 And pin 3，LQFP48 with LQFP64 Pins of the package 5 And pin 6 in the chip reset to default configuration OSC＿IN with

OSC＿OUT Function foot．Software can reset these two pins PD0 with PD1 Features．But for LQFP100 Package，since PD0 with PD1 It is inherent Function pin，so no need to re－image set by the software．For more details，please refer to CKS32F103x8 with CKS32F103xB Reference Manual Alternate Function I／O Chapters and debug settings section．In the output mode，PDO with PD1 It can only be configured 50 MHz Output mode．

7．Mark appears in the table of pin names ADC12＿INx（x Show 0～15 Integer），indicates that this pin can be ADC1＿INx or ADC2＿INx ．

E．g：ADC12＿IN9 This pin can be configured to represent ADC1＿IN9 it can also be configured to ADC2＿IN9 ．

8．Table Pin PA0 Corresponding to the multiplexing functions TIM2＿CH1＿ETR Indicating that you can configure the function TIM2＿TI1 or TIM2＿ETR ．Similarly，PA15
The name of the corresponding remapping multiplexing functions TIM2＿CH1＿ETR，It has the same meaning．

4．Memory map

Map 7 Memory MAP Map

5．Electrical Characteristics

5．1 Test Conditions

Unless otherwise specified，all voltages are to V ss As a benchmark．

5．1．1 The minimum and maximum values

Unless otherwise specified，the production line by 100% Products at ambient temperature $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ with $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}}$ max Under the test performed
（ $\mathrm{T}_{\text {A }}$ max Matches the selected temperature range），the minimum and maximum values of all guaranteed under worst case ambient temperature，supply voltage and clock frequency

Described in comment to each of the tables below，the analog design and／or process properties of the resulting data without test production line provides evaluation；the basis of comprehensive evaluation on the minimum and maximum values through the sample after the test，then the mean value plus or minus three times the standard distribution （ average $\pm 3 \Sigma$ ）get．

5．1．2．Typical values

Unless otherwise specified，typical data are based on $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}\left(2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DO}} \leq 3.3 \mathrm{~V}\right.$ voltage range）．These data are only used for design guidance and are not tested．
typical ADC Numerical accuracy is obtained by a batch of standard samples，obtained at all temperatures tested range，95\％Product numerical error given less $($ mean $\pm 2 \Sigma)$ ．

5．1．3 Typical curve

Unless otherwise noted，typical curve for design guidance only and are not tested．

5．1．4 Load Capacitance

When the measured load condition parameters shown in FIG pins 8 in

Map 8 Pin load conditions

5．1．5 Pin input voltage

Measuring the input voltage on pin embodiment shown in FIG． 9 in．

5．1．6 Supply Scheme

Note：The image above 4．7 F Capacitor must be connected to VDD3．

5．1．7 Current consumption measurement

Map 11 Current consumption measurement scheme

5．2 Absolute Maximum Ratings

Applied load on the device exceeds the absolute maximum rating list（table 3 ，table 4 ，table 5）The values given，may result in permanent damage to the device．Given here is
able to withstand the maximum load，does not mean that the functional condition of correct operation of this device．Long－term work in the device under maximum conditions may affect device reliability．

symbol	description	$\frac{\text { Minimum Maxil }}{-0.3}$	imum unit	V
$\mathrm{V}_{\text {dD }}-\mathrm{V}_{\text {ss }}$ External	ain supply voltage（comprising $\mathrm{V}_{\text {dDA }}$ with $\mathrm{V}_{\mathrm{DD} \text {（ }}$（1）		4.0	
$\mathrm{V}_{\text {IN }}$	in 5 V The tolerance on the input voltage pin（2）	$V_{\text {ss }}-0.3 V_{\text {od }}$	＋ 4.0	
	On the other voltage input pin（2）	V ss－ 0.3	4.0	
$\left\|\Delta V_{\text {DDx }}\right\|$	The voltage difference between the different supply pin		50	mV
$\mathrm{l} \mathrm{V}_{\text {ssx }}-\mathrm{V}_{\text {ss }}$ I The volt	ge difference between the different ground pins		50	
$V_{\text {ESD }}(\mathrm{HBM})$	ESD Electrostatic discharge voltage（Human Body Model）	See 5．3．11 Festival		

1 ．All the power（ $\mathrm{V}_{\mathrm{dd}}, \mathrm{V}_{\mathrm{dDA}}$ ）And ground（ $\mathrm{V}_{\text {ss，}}, ~ \mathrm{Vssa}$ ）Pin must always be connected to the external power supply system within the allowed range．
2 ．I IN．（PIN）Must not exceed its limit（see Table 4），Which is to ensure Vin Do not exceed their maximum．If you can not guarantee Vin Does not exceed its maximum value，but also to ensure the
External constraints $\mathrm{I}_{\mathbb{N} J(P \operatorname{PN})}$ Do not exceed their maximum．when $\mathrm{V}_{\mathbb{N}>}>\mathrm{V}_{\mathbb{N}} \max$ When there is a positive injection current；when $\mathrm{V}_{\mathbb{N}}<\mathrm{V}_{\text {ss }}$ When there is a reverse injection current．

symbol	description	Max Unit	mA
I vod	through $V_{\text {DD }} V_{\text {DDA }}$ The total current of the power supply line（supply current）（1）	150	
I vss	through $\mathrm{V}_{\text {ss }}$ The total ground current（flowing current）（1）	150	
110	Arbitrarily I／O And sink current output on the control pin	25	
	Arbitrarily I／O And the output current of the control pin	－－25	
I INJ（PIN）（2）（3） 5 V Inje		$-5 /+0$	
	Other injection current pin（4）	± 5	
$\Sigma \mathrm{IINS}_{\text {（PIN）（2）}} \mathrm{all} \mathrm{I} / \mathrm{O}$	nd the total injection current of the control pin（4）	± 25	

1．All the power（ $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDA}}$ ）And ground（ $\mathrm{V}_{\text {ss }}, \mathrm{V}_{\text {ssA }}$ ）Pin must always be connected to the external power supply system within the allowed range．

2．I Inv（PIN）Must not exceed its limit，which is to ensure Vin Do not exceed their maximum．If you can not guarantee Vin Does not exceed its maximum value，but also to ensure that the outside limit
system $I_{I N J}($ PiN $)$ Do not exceed their maximum．when $V_{I N}>V_{\text {do }}$ When there is a positive injection current；when $V_{\mathbb{N}}<V_{s s}$ When there is a reverse injection current．
3．Reverse injection current will interfere with the analog performance of the device．See section 5．3．17 Section．

4．When several I／O While port injection current，$\Sigma \operatorname{lins}(\mathrm{PIN})$ The maximum value of the absolute values of the forward current is injected into the immediate injection current and the reverse．The results are based on

Device 4 More I／O Ports on $\Sigma \operatorname{lins}$（PIN）Maximum features．

table 5 Temperature characteristics			
symbol	description	Numerical	unit
T STG	Storage temperature	$-65+150$	${ }^{\circ} \mathrm{C}$
T_{J}	The maximum junction temperature	150	${ }^{\circ} \mathrm{C}$

5．3 Working conditions

5．3．1．General working conditions

1．When ADC When，Table 43.
2．It is recommended to use the same power supply as $V_{D D}$ with $V_{\text {DDA }}$ Power supply，and power during normal operation，$V_{\text {DD }}$ with $V_{\text {dDA }}$ Between allows up 300 mV Difference．

3．in case T_{A} Low，as long as T_{J} No more than $T_{J} \max \left(\right.$ See 1 Section），it allows higher P_{D} Value．

4．In the state of lower power dissipation，as long as T_{J} No more than $T_{J \max }$（ See 1 Section），T_{A} lt can be extended to this range．

5．3．2．When the power－up and power－down working conditions

[^0]| symbol | parameter | condition | Minimum Max | mum unit | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| tvod | Vod Rate rise | | 0 | ∞ | $\mu \mathrm{s} / \mathrm{V}$ |
| | V do Rate of decline | | 20 | ∞ | |

5．3．3 Embedded reset and power control module characteristics

Parameters given in the table is based on the table 6 And at ambient temperature are listed in $V_{D D}$ Test results under supply voltage．

1．Guaranteed by the design characteristics of the product to a minimum value VPOR／PDR ．
2．Guaranteed by design，not tested in production．

5．3．4 Built－in reference voltage

Parameters given in the table is based on the table 6 And at ambient temperature are listed in V_{DD} Test results under supply voltage．

symbol	parameter	condition	Min Typ Max Units		1.26 V	
$\mathrm{V}_{\text {Refint }}$ Built－in reference voltage		$-40{ }^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}<+} 105^{\circ} \mathrm{C}$	1.16	1.20		
		$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}<+} 85^{\circ} \mathrm{C}$	1.16	1.20	1.24 V	
$\mathrm{T}_{\mathrm{s} \text {＿vefint（1）}}$ When reading out the internal reference voltage， ADC Sampling time				5.1	17.1 （2）	$\mu \mathrm{s}$

1．Guaranteed by the design characteristics of the product to a minimum value $V_{\text {POR／PDR }}$ ．
2．Guaranteed by design，not tested in production．

5．3．5 Supply current characteristics

Current consumption is a comprehensive index of various parameters and factors，these factors include parameters and operating voltage，ambient temperature，I／O Pin load，product software configuration，operating frequency，I／O The turnover rate of the foot，the position of the program codes and the like in the memory performed．

The method of measuring the current consumption of explanation，see FIG． 11
Current consumption in this section measured value in all operating modes given，are performed in a streamlined code can be obtained

Dhrystone2．1 Code equivalent results．

Maximum current consumption

The microcontroller in the following conditions：
－all I／O Pins are in input mode，and is connected to a quiescent level on－－Vod or $V_{s s}$（ No load）．
－All the peripherals are turned off，unless otherwise stated．
－Flash memory access time to adjust $f_{\text {hcıк }}$ Frequency of $0 \sim 24 \mathrm{MHz}$ When 0 A waiting period， $24 \sim 48 \mathrm{MHz}$ When 1 A waiting period，more than 48 MHz When 2 Wait cycles）．
－Instruction prefetch function is on（Note：This parameter must be set before setting the clock and bus division）．
－When you turn on the peripherals：$f_{\text {PCLK } 1=} f_{\text {нскк } / 2}, f_{\text {pcLK2 }}=f_{\text {нсLк }}$ ．table 10 ，table 11 And Table 12 The parameters given in the table is based 5 And at ambient temperature are listed in $V_{\text {DD }}$ Test results under supply voltage．

symbol parameter		condition	f HCLK	The maximum（1）		unit	
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} T_{\text {A }}=$		$105^{\circ} \mathrm{C}$			
IdD	Supply current in run mode		External clock（2）To enable all peripherals	72 MHz	50	50.3	mA
		48 MHz		36.1	36.2		
		36 MHz		28.6	28.7		
		24 MHz		19.9	20.1		
		16 MHz		14.7	14.9		
		8MHz		8.6	8.9		
		External clock（2）Turn off all peripherals	72 MHz	32.8	32.9		
			48 MHz	24.4	24.5		
			36 MHz	19.8	19.9		
			24 MHz	，	14.2		
			16 MHz	10.7	11		
			8MHz	6.8	7.1		

1．Derived from a comprehensive assessment，not tested in production．

2．External clock 8 MHz ，when f нcLK＞ 8 MHz When enabled PLL

symbol parameter			f HCLK	The maximum（1）		unit	
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{CT} \mathrm{A}_{\mathrm{A}}=$		$105^{\circ} \mathrm{C}$			
Ido	Supply current in run mode		External clock（2）To enable all peripherals	72 MHz	48	50	mA
		48 MHz		31.5	32		
		36 MHz		twenty four	25.5		
		24 MHz		17.5	18		
		16MHz		12.5	13		
		8MHz		7.5	8		
		External clock（2）Turn off all peripherals	72MHz	29	29.5		
			48 MHz	20.5	twenty one		
			36 MHz	16	16.5		
			24MHz	11.5	12		
			16MHz	8.5	9		
			8 MHz	5.5	6		

[^1]
2．External clock 8 MHz ，when f нcLk $>8 \mathrm{MHz}$ When enabled PLL ．

symbol par	meter	condition	f HCLK	The maximum（1）		unit
				$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{CT} \mathrm{C}_{\mathrm{A}}=$	$105^{\circ} \mathrm{C}$	
I DD	Supply current in sleep mode	External clock（2）To enable all peripherals	72 MHz	30	32	mA
			48 MHz	20	20.5	
			36 MHz	15.5	16	
			24 MHz	11.5	12	
			16 MHz	8.5	9	
			8 MHz	5.5	6	
		External clock（2）Turn off all peripherals	72 MHz	7.5	8	
			48 MHz	6	6.5	
			36 MHz	5	5.5	
			24 MHz	4.5	5	
			16 MHz	$\checkmark 4$	4.5	
			8 MHz	，	4	

1．It derived from a comprehensive assessment to the production $V_{D D} \max$ And to $f_{H C L K}$ max Enabled peripherals for the conditions tested．
2．External clock 8 MHz ，when f hclk 8 MHz When enabled PLL ．

1．Typical values are in $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Test available．

2．Derived from a comprehensive assessment，not tested in production．

Typical current consumption

MCU In the following conditions：
－all I／O Pins are in input mode，and is connected to a quiescent level on $-\mathrm{V}_{\mathrm{dD}}$ or V_{ss}（ No load）．
－All the peripherals are turned off，unless otherwise stated．
－Flash memory access time to adjust frclк Frequency of $0 \sim 24 \mathrm{MHz}$ When 0 A waiting period， $24 \sim 48 \mathrm{MHz}$ When 1 A waiting period，more than 48 MHz When 2 Wait cycles）．
－Ambient temperature and $V_{\text {do }}$ Supply voltages are listed in Table 6.
－Instruction prefetch function is on（Note：This parameter must be set before setting the clock and bus division）．When you turn on the peripherals：

table 14 Run mode Typical current consumption under the formula，From the internal data processing code Flash Run

symbol pa	ameter	condition	f hclk	Typical values（1）		unit
				Enable all peripherals（2）Turr	off all peripherals	
I DD	Supply current in run mode	External clock（3）	72 MHz	32.46	21.7	mA
			48 MHz	21.96	14.73	
			24 MHz	12.13	8.57	
			8 MHz	5.5	4.31	

1．Typical values are in $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ When the test result．

2．Each analog part ADC To add additional 0．8mA Current consumption．In the application environment，which in turn is only part of the current ADC（Set up ADC＿CR2 Deposit

The device ADON Will increase when the bit）．
3．External clock 8 MHz ，when f нcLк $>8 \mathrm{MHz}$ When enabled PLL ．

symbol pa	ameter	condition	f HCLK	Typical values（1）		unit
				Enable all peripherals（2）Turr	off all peripherals	
1 dD	Supply current in run mode	External clock（3）	72 MHz	24.84	14.21	mA
			48 MHz	17.17	10.05	
			24 MHz	9.38	5.86	
			8 MHz	4.07	2.92	

1．Typical values are in $T_{A}=25^{\circ} \mathrm{C}, \mathrm{VDD}=3.3 \mathrm{~V}$ When the test result．
2．Each analog part ADC To add additional 0．8mA Current consumption．In the application environment，which in turn is only part of the current ADC（Set up ADC＿CR2 Deposit

The device ADON Will increase when the bit）．
3．External clock 8 MHz ，when f нcLk $>8 \mathrm{MHz}$ When enabled PLL ．

IDD	Supply current in sleep mode	External clock（3）	72 MHz	17.57		

1．Typical values are in $T_{A}=25^{\circ} \mathrm{C}, \mathrm{VDD}=3.3 \mathrm{~V}$ When the test result．
2．Each analog part ADC To add additional 0．8mA Current consumption．In the application environment，which in turn is only part of the current ADC（ Set up ADC＿CR2 Deposit

The device ADON Will increase when the bit）．

3．External clock 8 MHz ，when f нcLK＞ 8 MHz When enabled PLL ．

Built－in peripheral current consumption

Built－in peripheral current consumption is shown in Table 17 ，MCU The working conditions are as follows：
－all I／O Pins are in input mode，and is connected to a quiescent level on－－V od or $V_{s s \text {（ }}$ No load）．
－All the peripherals are turned off，unless otherwise stated．
－The values given are derived by measuring the current consumption calculation

> - Turn off all peripheral clocks
> - Open only a peripheral clock
－Ambient temperature and $V_{D D}$ Supply voltages are listed in Table 4.

1． f HCLK $=72 \mathrm{MHz}, \mathrm{f}_{\mathrm{APB}}=\mathrm{fHCLK} / 2, \mathrm{f}_{\mathrm{APB}}=\mathrm{fHCLK}$ ，Pre－separation of each peripheral－frequency coefficient to the default value

5．3．6 External clock source characteristics

Speed external clock from the external oscillation source user generated
Characteristic parameters given in the table is to use a high speed external clock source is measured，ambient temperature and supply voltage in accordance with Table 6 conditions of．

symbol	parameter	condition	Min Typ Max Units

1．Guaranteed by design，not tested in production．

Low－speed external clock from the external oscillation source user generated
Characteristic parameters given in the table is to use a low－speed external clock source measured，ambient temperature and supply voltage in accordance with Table 6 conditions of．

symbol	parameter	condition Min Typ Max Units				
f LSE＿ext	User external clock frequency（1）			32.7684000 KHz		
V Lseh	OSC32＿IN High voltage input pin		1.8		3.3 V	
V Lsel	OSC32＿IN Low－level voltage input pin		0		1.7	
$t_{w(L S E)}$ t_{w}（LSE）	OSC32＿IN High or low time（1）		450			
$t_{\text {r（LSE）}}$ t_{f}（LSE）	OSC32＿IN Rise or fall time（1）				50	
$\mathrm{C}_{\text {in（LSE）}}$	OSC32＿IN Input capacitance（1）			5		pF
DuCy（Lse）	Duty Cycle		30	50	70	\％
IL	OSC32＿IN Input leakage current	$\mathrm{V}_{\text {ss }} \leq \mathrm{V}_{\text {in }} \leq \mathrm{V}_{\text {do }}$		-0.4 ± 1		$\mu \mathrm{A}$

1．Guaranteed by design，not tested in production．

Map 12 AC timing chart of the high－speed external clock source

Map 13 AC timing diagram of the external low speed clock source

High－speed external clock using a crystal／ceramic resonator generates

High－speed external clock（HSE）You can use a $4 \sim 16 \mathrm{MHz}$ Crystal oscillator／resonator configuration produces．The information given in this section are based on the use of the typical external components listed in the table，obtained by combining the characteristics evaluation results．In use，the resonator and the load capacitance of the oscillator must be as close as possible to the pin，in order to reduce the settling time and the start of output distortion．

1．Characteristic parameter of the resonator is given by a crystal／ceramic resonator manufacturer．

2．Derived from a comprehensive assessment，not tested in production．

3．for $\mathrm{C}_{\llcorner 1}$ with $\mathrm{C}_{\llcorner 2}$ ，Use quality，designed for high frequency applications（typical value） $5 \mathrm{pF} \sim 25 \mathrm{pF}$ Between the ceramic capacitor，and the selection of satisfactory crystalline
 C⿺夂 Time，PCB with MCU Pin capacitance should be taken into account（it can be roughly the pin PCB By capacitive plate 10pF estimate）．

4．Relatively low RF The resistance value，it is possible to provide protection to avoid problems when used in humid environments generated，leakage and bias conditions arising under this environment It has changed．However，when MCU Application in the harsh humid conditions，this parameter needs to be taken into account when designing．

5．tsu（HSE）Is a start－up time，is enabled from software HSE Begin until a stable 8 MHz The oscillation period of time．This value is a standard crystal resonator
The measured，it may be due to different manufacturers vary widely crystals．

1．Rext Value determined by the characteristics of the crystal．Typical values are 5 to 6 Fold Rs ．

Low－speed external clock using a crystal／ceramic resonator generates

Low－speed external clock（LSE）You can use a 32.768 kHz Crystal oscillator／resonator configuration produces．The information given in this section are based on Table twenty one Typical external components listed in the evaluation of the results obtained by the integrated features．In use，the resonator and the load capacitance of the oscillator must be as close as possible to the pin，in order to reduce the settling time and the start of output distortion．

Note：For $C_{L 1}$ with $C_{L 2}$ We recommended to use high－quality 5pF～15pF Between the ceramic capacitor／and meet the requirements of the selection or crystal resonator
Device．usually $C_{L 1}$ with $C_{L 2}$ With the same parameters．Manufacturers typically crystalline $C_{L 1}$ with $C_{L 2}$ The serial combination of parameters given load capacitance．Load
Capacitance C_{L} It is calculated by the following formula：$C_{L}=C_{L 1} \times C_{L 2 /(} C_{L 1}+C_{L 2)}+C_{\text {stray }}$ ，among them $C_{\text {stray }}$ It is the pin capacitance and $P C B$ Board or $P C B$ Capacitance associated，its typical value is between $2 p F$ to $7 p F$ between．

WARNING：To avoid exceeding $C_{\llcorner 1}$ with $C_{\llcorner 2}$ The maximum（ 15 pF ）Highly recommended load capacitance $C_{\llcorner } \leq 7 p F$ Resonator，the load can not be used

Capacitance $12.5 p F$ The resonator．For example：If one of the load capacitance $C_{L=}=6 p F$ Resonator and $C_{\text {stray }}=2 p F$ ，then $C_{L 1}=C_{L 2}=8 p F$ ．
table 21 LSE Oscillator Characteristics（fLSE $=32.768 \mathrm{kHz}$ ）（1）

symbol	parameter	condition	Min Typ Max Units			$\mathrm{M} \Omega$
R_{F}	Feedback resistor			5		
$\begin{gathered} C_{L 1} \\ C_{L 2(2)} \end{gathered}$	Corresponding to the load capacitance and serial proposed crystal impedance（	${ }^{\text {a }}$（3） $\mathrm{Rs}=30 \mathrm{k} \Omega$			15	pF
12	LSE Drive current	$\mathrm{V}_{\mathrm{dD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {ss }}$			$1.4 \mu \mathrm{~A}$	
gm	Transconductance oscillator		5			$\mu \mathrm{A} / \mathrm{V}$
tsu （LSE）（4）	Start Time	V do stable		3		s

1．Derived from a comprehensive assessment，not tested in production．
2．See cautions and warnings in this paragraph above the table．

3．With a smaller selection Rs Oscillator high value（e．g．MSIV－TIN32．768kHz），Current consumption can be optimized．

4．t su（HSE）Is a start－up time，is enabled from software HSE Measurement is started until a stable 8 MHz The oscillation period of time．This value is a standard crystal
Measured on a resonator，which may vary by manufacturer of crystals vary widely．

5．3．7 Characteristics of the internal clock source

Characteristic parameters given in the table is the use of ambient temperature and supply voltage in accordance with Table 6 Measured conditions．

High－speed internal（ HSI）RC Oscillator

1． $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40 \sim 105^{\circ} \mathrm{C}$ Unless otherwise noted．

2．Guaranteed by design，not tested in production．

Low－speed internal（ LSI）RC Oscillator

symbol	parameter	Min Typ Max Units			
$\mathrm{fLSI}_{\text {（2）}}$	frequency	30	40	60	kHz
tsu （LSI）（3）	LSI Oscillator start－up time			85	$\mu \mathrm{s}$
$\mathrm{IdD}(\mathrm{LSI})(3)$	LSI Oscillator power		0.65	$1.2 \mu \mathrm{~A}$	

[^2]2．Derived from a comprehensive assessment，not tested in production．

3．Guaranteed by design，not tested in production．

Low－power mode wakeup time

table twenty four Wake－up time is listed in a 8 MHz of HSI RC Wake－up phase of the oscillator measured．Wake－up clock source used by the current operating mode may be：
－Down or standby mode：the clock source is RC Oscillator
－Sleep mode：the clock source is the clock all the time when entering a sleep mode using the ambient
temperature and power supply voltage in accordance with Table 6 Measured conditions．

symbol	parameter	condition	Typical Unit
t wusleep（1）Wake up	from sleep mode	use HSI RC Wake－up Clock	1.7
t WUSTOP（1）	Wake－up from stop mode（regulator in run mode）	HSI RC Wake－up Clock $=2 \mu \mathrm{~s}$	2.6
	Wake－up from stop mode（low power consumption mode regulator）	HSI RC Wake－up Clock $=2 \mu \mathrm{~s}$ Regulator from the low power mode time $=5 \mu \mathrm{~s}$	5.1
t wustdiy（3）Wake－up	from standby mode	$\text { HSI RC Wake-up Clock }=2 \mu \mathrm{~s}$ Wake－up regulator from the closed mode time $=38 \mu \mathrm{~s}$	52

1．Wake－up time is measured from the start of the event to wake the user program reads the first instruction．

5．3．8 PLL characteristic

table 25 Parameters listed is the supply voltage and the ambient temperature in accordance with Table 6 Measured conditions．

1．Derived from a comprehensive assessment，not tested in production．
2．Note that the correct multiplication factor，so that in accordance with PLL Such that the input clock frequency fPL＿out It is within the allowable range．

5．3．9 Reservoir characteristics

Flash memory

Unless otherwise noted，all parameters are in $\mathrm{T}_{\mathrm{A}}=.40 \sim 105^{\circ} \mathrm{C}$ get．

symbol	parameter	condition	Min Typ Max Units		20	$\mu \mathrm{s}$
$t_{\text {prog }}$	16 Bit programming time	TA $=-40 \sim 100^{\circ} \mathrm{C}$	－	－		
terase pag	（ 1 K Bytes）erase time	$\mathrm{T}_{\mathrm{A}}=.40 \sim 105^{\circ} \mathrm{C}$	－		2	ms
$\mathrm{t}_{\text {me }}$	Full chip erase	TA $=-40 \sim 10{ }^{\circ} \mathrm{C}$	－		10	
Ido	Supply Current	Read mode， f нскк $=72 \mathrm{MHz}, 2$ A waiting period， $\mathrm{VDD}=3.3 \mathrm{~V}$			21.6	
		Write／erase mode， $\mathrm{f}_{\mathrm{HcLк}}=72 \mathrm{MHz}, \mathrm{VDD}=3.3 \mathrm{~V}$			3	
		Standby mode，VDD $=3.3 \sim 3.6 \mathrm{~V}$			1	$\mu \mathrm{A}$

1．Guaranteed by design，not tested in production．

symbol	parameter	condition	Min Typ Max Units	
Nend	life	$\begin{aligned} & T_{A}=-40 \sim 85^{\circ} \mathrm{C}(\text { Suffix is } 6) \\ & T_{A}=-40 \sim 105^{\circ} \mathrm{C}(\text { Suffix is } 7) \end{aligned}$	100	Thousand
$\mathrm{t}_{\text {RET }} \underline{\text { D }}$	tion	TA $=40-85{ }^{\circ} \mathrm{C}$ Time	10	year

1．Derived from a comprehensive assessment，not tested in production．

5．3．10 EMC characteristic

Sensitivity test sample is tested in the comprehensive assessment of the product．

Feature EMS（ Electromagnetic Susceptibility）

When running a simple application（by 1 ／O Port Blink 2 More LED），The test sample is applied 2 Kinds of electromagnetic interference until an error occurs，led Flashing indicates errors
－Electrostatic discharge（ ESD）（ Positive discharge and negative discharge）is applied to the chip until a pin all functional errors．This test is in line with IEC 1000－4－2 standard．
－FTB ：in $V_{D D}$ with $V_{s s}$ Adopted a 100 pF Applying a capacitor voltage transient burst（forward and reverse）until a functional error．This test is in line with IEC 1000－4－4 standard．Chip reset system can resume normal operation．Test results are shown in the following table．

symbol	parameter	condition	Level／type
$V_{\text {feSd }}$	Applied to any I／O Feet，resulting in erroneous function of voltage limit．	$V_{D D}=3.3 V, T_{A=+25^{\circ} \mathrm{C},}$ $\mathrm{f}_{\text {нсLK }}=72 \mathrm{MHz}$ ．meets the IEC 1000－4－2	2B
$V_{\text {eftb }}$	in V_{mo} with V_{ss} On by 100pF Capacitance applied Resulting in erroneous function of voltage transient burst limit	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},$ $\mathrm{f}_{\text {HCLK }}=72 \mathrm{MHz}$ ．meets the IEC 1000－4－4	4A

Solid design software to avoid noise problems

In the device level EMC Evaluation and optimization is carried out in a typical application environment．It should be noted that good EMC Performance and user applications and specific software are closely related．

Therefore，it is recommended to implement the software EMC Optimization，and with EMC Related to certification testing

Software recommendations

Process control software must include Runaway，such as：
－Corrupted program counter
－Unexpected reset
－The key data is corrupted（control registers ．．．．．．）

Pre－certification test

Many common failure（unexpected reset and the program counter is damaged），it is possible by manually NRST The introduction of a low level or into a continuous on the crystal pins 1 The second low level to reproduce．

Making ESD Test，voltage can be applied directly beyond the requirements of the application on the chip，when the operation of detecting an unexpected place，part of the software needs to be enhanced to prevent the occurrence of an unrecoverable error．

Electromagnetic interference（EMI）

When you run a simple application（by I／O Port Blink 2 More LED）Monitoring chip emits electromagnetic fields．This Emissions test Compliance SAE J1752／ 3 Standard， which specifies the test load plate and pins．
table 29 EMI characteristic

symbol pa	rameter	condition	Monitoring frequency ban	The maximum（ $\mathrm{fHSE} / \mathrm{fHCLK}^{\text {）}}$		unit
				$8 / 48 \mathrm{MHz}$	$8 / 72 \mathrm{MHz}$	
$\mathrm{Semi}_{\text {eme }}$	ak	$V_{D D}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$ ，LQFP100 Package with IEC 61967－2	$0.1 \sim 30 \mathrm{MHz}$	12	12	
			$30 \sim 130 \mathrm{MHz}$	twenty two	19	$\mathrm{dB} \mu \mathrm{V}$
			$130 \mathrm{MHz} \sim 1 \mathrm{GHz}$	twenty three	29	
			SAM EMI level do not	4	4	－

5．3．11 Absolute maximum（electrical sensitivity）

Based on three different tests（ ESD ，LU）Using a specific measurement method，the chip strength test to determine the sensitivity of the performance of its electrical

Electrostatic discharge（ ESD）

Electrostatic discharge（a positive pulse and a second interval after a negative pulse）is applied to all pins in all the samples，the sample size and the number of pins associated power chip（ 3 sheet $\times(n+1$ ）Supply pins）．This test is in line with JESD22－A114／C101 standard．

symbol	parameter	condition	$\begin{aligned} & \text { Types of } \\ &= \\ &= \\ & 2 \end{aligned}$	he maximum（1）unit	V
$V_{\text {esd }}$（HBM）	Electrostatic discharge voltage（Human Body M \dagger	$\mathrm{T}=+25^{\circ} \mathrm{C}$ ，meets the del）		2000	
$\mathrm{V}_{\text {ESS }}(\mathrm{CDM})$ Electros	discharge voltage（charging device model） $\mathrm{T}=+2 \rho$	$5^{\circ} \mathrm{C}$ ，symbol Close JESD22－C101	II	500	

1．Derived from a comprehensive assessment，not tested in production．

Static latch

In order to evaluate the performance of the latch，you need 6 Carried out on samples 2 Complementary static latch－up testing：
－For each supply pin provides the supply voltage exceeds the limit．
－In each of the input，output and configurable I／O Injection current pin．This test is in
line with EIA／JESD 78A IC latch standards．

5．3．12 I／O Port characteristics

General purpose input／output characteristics

Unless otherwise specified，the following table lists the parameters in Table 6 Measured conditions．all I／O Ports are compatible CMOS with
TTL ．

symbol	parameter	condition	Minimum	Typical values	Maximum	unit
VıL Low	evel input voltage	standard I／O Feet，input Low voltage	－	，	$0.28 \times\left(\mathrm{Vdo}_{\text {d }} 2 \mathrm{~V}\right)+0.8 \mathrm{~V}$	V
		FTI／O（1）Feet，input Low voltage			$\begin{gathered} 0.32 \times(\mathrm{V} \text { do }-2 \mathrm{~V}) \\ +0.75 \mathrm{~V} \end{gathered}$	
		all I／O Mouth，in addition to BTOOTO			0.35 V do	
$\mathrm{V}_{\text {ı }} \mathrm{High}$ ．	level input voltage	standard I／O Pin，high voltage input	$0.41 \times(\mathrm{Vdo} 2 \mathrm{~V})+.1.3 \mathrm{~V}$			
		FT I／O foot（ 1），A high level input voltage	$0.42 \times\left(\mathrm{V}_{\text {do }} 2 \mathrm{~V}\right)+1 \mathrm{~V}$			
		all I / O Mouth，in addition to B	$0.65 \mathrm{~V}_{\mathrm{DD}(2)}$			

$\mathrm{V}_{\text {hys }}$	standard I／O Foot Schmitt trigger voltage hysteresis（2）		200			mV
	5V tolerate I／O Foot Schmitt trigger voltage hysteresis （2）		5\％V ${ }_{\text {do }}(3)$			
1 kg Input	leakage current（4）	$\mathrm{V}_{\mathrm{ss}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{dD}}$ standard I／O port			± 1	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V} \text {, }$ 5V Tolerance port			3	
Rpu Weak	pull equivalent resistance（5）	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ss }}$	30	40	50	k ，
R po Weak	pull－down impedance（5）	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {do }}$	30	40	50	
Cıo	$1 / \mathrm{O}$ Pin capacitance			5		pF

1． $\mathrm{FT}=5 \mathrm{~V}$ tolerate．
2．Schmitt trigger switching hysteresis voltage level．Derived from a comprehensive assessment，not tested in production．
3．Voltage is at least 100 mV ．
4．If the pin intrusion reverse current，leakage current may be higher than a maximum value adjacent．
5．Pullup and pulldown resistor is designed as a real resistor in series with a switchable PMOS／NMOS achieve．This one PMON／NMOS Switch resistance is very small（about
Take up 10\％）．
all I／O Ports are CMOS with TTL Compatible（without software configuration），their characteristics considered most stringent CMOS Process or
TTL parameter：
－\quad for V_{H} ：
－in case $V_{D D}$ Between［ $2.00 \mathrm{~V} \sim 3.08 \mathrm{~V}$ ］；use CMOS But contains characteristics TTL ．
－in case $V_{D D}$ Between［ $3.08 \mathrm{~V} \sim 3.60 \mathrm{~V}$ ］；use TTL But contains characteristics CMOS ．
－for $\mathrm{V}_{\text {IL }}$ ：
－in case Vdo Between［ $2.00 \mathrm{~V} \sim 2.28 \mathrm{~V}$ ］；use TTL But contains characteristics CMOS ．
－in case $V_{D D}$ Between［ $2.28 \mathrm{~V} \sim 3.60 \mathrm{~V}$ ］；use CMOS But contains characteristics TTL ．

Output drive current

GPIO（ General purpose input／output port）or an output can absorb up to $+/-8 \mathrm{~mA}$ Current and absorbs +20 mA Current（not strictly V ）．In the user application，I／O The
number of feet must ensure that the drive current can not exceed 5．2 Absolute Maximum Ratings section given below：
－all I／O From Port V The sum of the currents acquired，plus MCU in V On obtaining maximum operating current can not exceed the absolute maximum ratings IVDD（ Table 4）．
－all I／O And from the port absorption V The sum of the currents flowing，plus MCU in V The maximum operating current flowing on，can not exceed the absolute maximum ratings IVSS（ Table 4）．

The output voltage

Unless otherwise specified，the table 33 Parameters listed are ambient temperature and $V_{\text {DD }}$ Supply voltage in accordance with Table 6 Measured conditions．all I／O Ports are compatible CMOS with TTL of．

symbol	parameter	condition	Minimum Maximum Unit		V
VoL（1）${ }^{\text {Outp }}$	ut low，when 8 Pins while absorbing current CMOS port， $1_{10}=$			0.4	
$\mathrm{V}_{\text {OH（2）}}$ Outpy	t high，when 8 While the output current pin	$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$	Vod． 0.4		
Vol（1）Outp	ut low，when 8 Pins while absorbing current TLL port， $110=$	$+8 \mathrm{~mA}$		0.4	
Voн（2）（3）Outp	ut high，when 8 While the output current pin	$2.7 \mathrm{~V}<\mathrm{V}_{\text {do }}<3.6 \mathrm{~V}$	2.4		
VoL（1）（3）Outp	ut low，when 8 Pins while absorbing current	$110=+20 \mathrm{~mA}$		1.3	
$\mathrm{VOH}_{\text {（2）（3）}}$ Outp	ut high，when 8 While the output current pin	$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$	2.4		
VoL（1）（3）Outp	ut low，when 8 Pins while absorbing current	$110=+6 \mathrm{~mA}$		0.4	
$\mathrm{V}_{\text {OH（2）（3）}} \mathrm{Outp}$	ut high，when 8 While the output current pin	$2 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	Vod． 0.4		

1．Absorption of current chip I $ю$ We must always follow the table 4 Given the absolute maximum ratings at the same time ho The sum of（all I／O Foot and control pins）must not exceed I vss ．
2．Chip output current Iı We must always follow the table 4 Given the absolute maximum ratings at the same time lio The sum of（all I O Foot and control pins）must not exceed Ivin ．

3．Derived from a comprehensive assessment，not tested in production．

AC input and output characteristics
AC input－output characteristics of the definition and values respectively in FIG． 16 And Table 34 Given．Unless otherwise indicated，the listed
parameters is the supply voltage and the ambient temperature in accordance with Table 6 Measured conditions．
table 34 AC input－output characteristics（1）

MODEx［1：0］symbo		parameter	condition	Minimum Ma	kimum Unit	
$\begin{gathered} 10 \\ (2 \mathrm{MHz}) \end{gathered}$	$\mathrm{f}_{\text {max（10）out }}$	The maximum frequency（2）	$\mathrm{C}_{L}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{dD}}=2 \sim 3.6 \mathrm{~V}$		2	MHz
	$\mathrm{t}_{\mathrm{f}}(\mathrm{O})$ out High^{\prime}	h output fall time to low $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{Do}}$ a high level output rise time	$=2 \sim 3.6 \mathrm{~V}$		125 （3）	ns
	$\mathrm{tr}_{\text {（10）out }}$ Up to				125 （3）	
$\begin{gathered} 01 \\ (10 \mathrm{MHz}) \end{gathered}$	$\mathrm{f}_{\text {max（ }}(\mathrm{O})$ out	The maximum frequency（2）	$C_{L}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=2 \sim 3.6 \mathrm{~V}$		10 MHz	
	$\mathrm{t}_{\mathrm{f}}(10)$ out High	output fall time to low $C_{L}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}$ a high level output rise time	$=2 \sim 3.6 \mathrm{~V}$		25 （3）	ns
	$\mathrm{tr}_{\text {（10）out Up to }}$				25 （3）	
$\begin{gathered} 11 \\ (50 \mathrm{MHz}) \end{gathered}$	$\mathrm{f}_{\text {max }}(10)$ out	The maximum frequency（2）	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{dD}}=2.7 \sim 3.6 \mathrm{~V}$		50	MHz
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=2.7 \sim 3.6 \mathrm{~V}$		30	
			$C_{L}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{dD}}=2 \sim 2.7 \mathrm{~V}$		20	
	$\mathrm{t}_{\mathrm{f} \text {（10）out }} \mathrm{High}$	h output fall time to low	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{dD}}=2.7 \sim 3.6 \mathrm{~V}$		5 （3）	ns
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {dD }}=2.7 \sim 3.6 \mathrm{~V}$		8（3）	
			$C_{L}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{dD}}=2 \sim 2.7 \mathrm{~V}$		12 （3）	
	$\mathrm{t}_{\mathrm{r}}(\mathrm{O})$ out Up to a high level output rise time $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V} \mathrm{V} \begin{array}{r}\mathrm{D}=2.7 \sim 3.6 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=2.7 \sim 3.6 \mathrm{~V}\end{array}$				$5(3)$ $8(3)$	

			$C_{L=50 \mathrm{pF}, \mathrm{VDD}=2 \sim 2.7 \mathrm{~V}}$		$12(3)$	
-	$\mathrm{t}_{\mathrm{ExTIpw}}$	EXTI The controller detects the external signal				

1．I／O Port speed by MODEx［1：0］Configuration．See also CKS32F103x8 with CKS32F103xB Reference manual on GPIO Port Configuration Register
instruction of．

2．The maximum frequency chart 16 Defined．

3．Guaranteed by design，not tested in production．

in case $\left(t_{r}+t_{f} \leq 2 / 3 T\right.$ And the duty cycle（45－55\％）When the load is 50 pF
When the maximum frequency

Map 16 AC input－output characteristic is defined

5．3．13 NRST Pin Characteristics

NRST Pin drivers to use CMOS Process，it can not disconnect the connection of a pull－up resistor，Rpu（Table 32）．Unless otherwise specified，the table 35 Parameters listed are ambient temperature and $V_{\text {DD }}$ Supply voltage in accordance with Table 6 Measured conditions．

$$
\text { in accordance with Table } 6 \text { Measured conditions. }
$$

symbol	parameter	condition	Min Typ Ma	\times Units		
VIL（NRST）${ }_{\text {（1）}}$	NRST Input low voltage		－0．5		0.8 V	
$\mathrm{V}_{\mathrm{IH} \text {（NRST）}}{ }^{(1)}$	NRST Input High Voltage		2		$V_{\text {DD }}+0.5$	
$\mathrm{V}_{\text {hys（NRST）}}$（1）	NRST Schmitt trigger voltage late Stagnant			200		mV
$\mathrm{R}_{\text {pu }}$	Weak pull equivalent resistance（2）	$\mathrm{V}_{\text {In }}=\mathrm{V}_{\text {ss }}$	30	40	50	k Ω
V （NRST）$^{(1)}$	NRST Filtering the input pulse				100	ns
$\mathrm{V}_{\mathrm{NF} \text {（NRST）}}$（1）	NRST Non－filtered input pulse		300			ns

1．Guaranteed by design，not tested in production．

2．Pull－up resistor is designed as a real resistor in series with a switchable PMOS achieve．This one PMON／NMOS Switch resistance is very small（approximately 10\％）．

Map 17 suggested NRST Pin protection

1．Network is reset to prevent parasitic reset．

2．The user must ensure that NRST Table can be lower than the potential of the pin 35 The largest listed V_{IL}（NRST）Or less，or MCU It can not be reset．

5．3．14 TIM Features of Timer

table 36 The parameters listed guaranteed by design．
For multiplexed input and output（output compare function pin，input capture，external clock，PWM Output）features details on participation 5．3．12

1．TIMx Is a generic name，on behalf of TIM1～TIM4 ．

5．3．15 Communication Interface

I_{2} C Interface Features

Unless otherwise specified，the table 50 table 37 Parameter list is the use of ambient temperature，$f_{\text {pcLk } 1}$ Frequency and V Supply voltage in accordance with Table 6 Measured conditions．

CKS32F103x8 with CKS32F103xB Standard product $I_{2} C$ Interface standard $I_{2} C$ Communication protocol，but with the following limitations：SDA with
SCL No＂true＂Open drain pin，when configured as an open drain output，and the pin－out Vob between PMOS Tube is closed，but still exists．
I_{2} C Interface characteristics are listed in Table 37 Relevant input and output multiplexing function pin（SDA with SCL）The characteristic details，see page 5．3．12 Section．

symbol	parameter	standard I2 C（1）		fast I2 C（1）（2）		unit
		maximum value	minimum value	Maximum Minimum		
$\left.\mathrm{tw}_{\mathrm{w}} \mathrm{SCLL}\right)$	SCL Clock Time Low	4.7		1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {wSCLH }}$ ）	SCL High Time Clock	4.0		0.6		
$\mathrm{tsu}_{\text {su }}(\mathrm{SDA})$	SDA Settling Time	250		100		
$\mathrm{th}_{\text {（ }}$（SDA）	SDA Data Hold Time	0 （3）		0 （4）	900 （3）	
$\begin{aligned} & \mathrm{t}_{\mathrm{r}(\mathrm{SDA})} \\ & \mathrm{t}_{\mathrm{r}(\mathrm{SCL})} \end{aligned}$	SDA with SCL Rise Time		1000	$20+0.1 C_{b}$	300	ns
$t_{\text {fsDA }}$ $t_{\text {fsCL }}$	SDA with SCL Fall Time		300		300	
$\mathrm{th}_{\text {（ } \mathrm{STA})}$ Start	ndition Hold Time	4.0		0.6		$\mu \mathrm{s}$
$\mathrm{tsu}_{\text {su }}$（TA）Rep	start condition setup time	4.7		0.6		
$\mathrm{tsu}_{\text {su }}$（ST） $\mathrm{Stop}^{\text {a }}$	ndition Setup Time	4.0		0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{w} \text { (STO: STA }}$ ）	Stop condition to condition the start time （bus idle）	4.7		1.3		$\mu \mathrm{s}$
Cb	Each bus capacitive load		400		400	pF

1．Guaranteed by design，not tested in production．
2．To achieve the standard mode $\mathrm{I}_{2} \mathrm{C}$ The maximum frequency，fpcLk 1 It must be greater than 2 MHz ．In order to achieve fast mode $\mathrm{I}_{2} \mathrm{C}$ The maximum frequency，fpcLK1 It must be greater than 4 MHz ．
3．If you are not required to stretch SCL Low time signal，just beginning to meet the conditions of maximum hold time．

4．To leap SCL Falling undefined area，MCU Must ensure that internal SDA The signal of at least 300 ns Hold time．

1．Measurement points provided in CMOS Level： 0.3 V dD with 0.7 V DD ．
table 38 SCL frequency $\left(\mathrm{f}_{\text {PCLK1 }}=36 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}\right.$ ）（1）（2）

	$\mathrm{R} P=4.7 \mathrm{k} \Omega$
400	$0 \times 801 \mathrm{E}$
300	0×8028
200	$0 \times 803 \mathrm{C}$
100	$0 \times 00 \mathrm{~B} 4$
50	0×0168
20	0×0384

1．$R_{P}=$ An external pullup resistor，$f s C L=I_{2} C$ speed．
2．for 200 kHz About speed，speed error is $\pm 5 \%$ ．For other speed range，the speed error is $\pm 2 \%$ ．These external changes depending on design ELEMENTS

Precision parts．

SPI Interface Features

Unless otherwise specified，the table 39 Parameter list is the use of ambient temperature， $\mathrm{f}_{\text {pckx }}$ Frequency and V_{og} Supply voltage in accordance with Table 6 Measured conditions．

About the input and output alternate－function pin（NSS ，SCK ，MOSI ，MISO）The characteristic details，see page 5．3．12 Section．

[^3]3．Represents the minimum value of the minimum time to drive the output，the maximum value obtained represents the maximum time the correct data

4．Represents the minimum value of the output of the minimum off time，maximum data line represents the maximum time a high－impedance state．

Map 20SPI Timing diagram－From the patterns and CPHA $=1$（1）
1．Measurement points provided in CMOS Level： 0.3 V do with 0.7 V do ．

1．Measurement points provided in CMOS Level： 0.3 V dD with 0.7 V do ．

USB characteristic

USB（ Full Speed）interface is through USB－IF Certification．

table 40USB Start Time			
symbol		parameter	Maximum
t startup（1）	USB Transceiver start time	1	unit

1．Guaranteed by design，not tested in production．

symbol parameter	condition	Minimum（1）The naximum（1）unit		
Input Level				
VDD USB Operating voltage（2）		3.0 （3）	3.6	V
$V_{\text {DI（4）}}$ Differential input sensitivity	I（USBDP，USBDM）	0.2		V
$\mathrm{V}_{\text {cm（4）}}$ Differential common mode range	contain $\mathrm{V}_{\text {dr }}$ range	0.8	2.5	
$\mathrm{V}_{\text {SE（4）}}$ Single－ended receiver threshold		1.3	2.0	
Output level				
Vol Static output low $1.5 \mathrm{k} \Omega$ of Rı Conne	to 3.6 V （5）		0.3	V
$\mathrm{V}_{\text {OH Static output high }} 15 \mathrm{k} \Omega$ of R L Connected to $\mathrm{V}_{\text {ss（5）}}$		2.8	3.6	

1．All measurements are subject to a voltage ground terminal device．
2．In order to USB 2．0 Full－speed electrical specifications compatible，USBDP（ $\mathrm{D}+$ ）It must pass a pin $1.5 \mathrm{k} \Omega$ Resistor to $3.0 \sim 3.6 \mathrm{~V}$ Voltage ．

3．CKS32F0103xx correct USB Function can 2．7V Guaranteed，but not in $2.7 \sim 3.0 \mathrm{~V}$ Range voltage level drops electrical characteristics．

4．A comprehensive assessment to ensure，not tested in production．

5． R_{L} It is connected to USB The load on the drive．

Map 22USB Timing：data signal rise and fall time is defined

table 42USB Full－speed electrical characteristics（1）					
symbol	parameter	condition	Minimum	Maximum	unit
t_{r}	Rise Time（2）	$\mathrm{CL} \leq 50 \mathrm{pF}$	4	20	ns
t_{f}	Fall Time（2）	$\mathrm{CL} \leq 50 \mathrm{pF}$	4	20	ns
$\mathrm{t}_{\mathrm{rfm}}$	Rise and fall time matching	$\mathrm{t}_{\mathrm{r} / \mathrm{t}_{\mathrm{f}}}$		90	110
V cRs	CROSS voltage output signal		1.3	2.0	V

1．Guaranteed by design，not tested in production．
2．Signal from the measurement data 10% to 90%

5．3．16 CAN（ Controller Area Network）interface

About the input and output alternate－function pin（CAN＿TX with CAN＿RX）The characteristic details，see page 5．3．12 Section．

5．3．17 12 Place ADC characteristic

Unless otherwise specified，the table 43 The argument is consistent with the use of table 6 Ambient temperature conditions，fpCLK2 Frequency and V dDA Supply voltage measured．

Note：It is recommended to perform a calibration at each power－up．

symbol	parameter	condition	Minimum Typic	Max Unit		
$V_{\text {dDA }}$	Supply voltage	－	2.4	－	3.6 V	
$V_{\text {Ref }}+$	Positive reference voltage	－	2.4	－V doa		V
I vref	in V Input voltage feet	－	－	160 （1）	220 （1）	$\mu \mathrm{A}$
$\mathrm{f}_{\text {ADC }}$	ADC Clock frequency	－	0.6	－	14	MHz
fs（2）	Sampling rate	－	0.05	－	1	MHz
$\mathrm{f}_{\text {TRIG（2）}}$	External trigger frequency	$\mathrm{f}_{\text {ADC }}=14 \mathrm{MHz}$	－	－	823	kHz
		－	－	－	17	$1 / \mathrm{f}_{\text {ADC }}$

$V_{\text {AIN（3）}}$	Conversion voltage range	－	$0\left(V_{\text {ssA }} \text { or } V_{\text {ref- }}\right.$ Connected to ground）	－Vref＋		V
$\mathrm{R}_{\text {AIN（2）}}$	External input impedance		－	－	50	k Ω
$\mathrm{R}_{\text {ADC（2）}}$	Sampling switch resistance		－	－	1	$\mathrm{k} \Omega$
$\mathrm{Cadc}_{\text {（2）}}$	Internal sample and hold capacitor				8	pF
$\mathrm{tcAL}_{\text {（2）}}$	Calibration time	$\mathrm{f}_{\text {ADC }}=14 \mathrm{MHz}$	5.9			$\mu \mathrm{s}$
			83			$1 / \mathrm{f}$ ADC
$t_{\text {lat（2）}}$	Injection trigger a transition delay	$f_{\text {ADC }}=14 \mathrm{MHz}$			0.214	$\mu \mathrm{s}$
					3 （4）	$1 / \mathrm{f}$ ADC
$t_{\text {atr（2）}}$	Conventional conversion trigger delay	$f_{A D C}=14 \mathrm{MHz}$			0.143	$\mu \mathrm{s}$
					2（4）	$1 / \mathrm{f}_{\text {ADC }}$
ts（2）	sampling time	$f_{\text {ADC }}=14 \mathrm{MHz}$	0.107		17.1	$\mu \mathrm{s}$
			1.5		239.51 ／f／adc	
$\mathrm{tstab}^{\text {（2）}}$	Power－on time		0	0	1	$\mu \mathrm{s}$
$t \operatorname{cosv}$（2）	The total conversion time	$f_{\text {ADC }}=14 \mathrm{MHz}$	1		18	$\mu \mathrm{s}$
	（ Including sampling time）		14 to 252 （ sampling ts＋Successive approximation 12．5）			$1 / \mathrm{f}$ ADC

1．A comprehensive assessment to ensure，not tested in production．
2．Guaranteed by design，not tested in production．
3．in QFN36，LQFP48 with LQFP64 Packaging products，VREF＋Internally connected to VpDA，VreF－Internally connected to $V_{s s A}$ ．See Table 2 ．
4．For external trigger，you must watch 43 Delay listed plus a delay 1 ／f pcLK2 ．

formula 1 ：maximum $\mathbf{R}_{\text {AIN }}$ formula

The above equation（Equation 1）For determining the maximum external impedance，such that the error may be less than $1 / 4$ LSB．among them $N=12$（ Show 12 Bit resolution）．

Ts（ cycle）	$\mathrm{ts}(\mu \mathrm{s})$	maximum $\mathrm{Rain}_{(k \Omega)}$
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	－
239.5	17.1	－

[^4]| symbol | parameter | Test Conditions | Typical values± 1.3 | The maximum（3） | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ET | Comprehensive error | $\begin{gathered} f_{\text {PCLK } 2}=56 \mathrm{MHz} \\ f_{\text {ADC }}=14 \mathrm{MHz}, R_{\text {AIN }}<10 \mathrm{k} \Omega, \\ V_{\text {DDA }}=3 \sim 3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$
 Measurements were ADC After the calibration performed | | ± 2 | LSB |
| EO | Offset error | | ± 1 | ± 1.5 | |
| EG | Gain Error | | ± 0.5 | ± 1.5 | |
| ED Differen | earity error | | ± 0.7 | ± 1 | |
| EL Integral | ity error | | ± 0.8 | ± 1.5 | |

1．$A D C D C$ precision value is measured after internal calibration．

2．ADC Accuracy of the relationship between the injection current and the reverse：the need to avoid reverse current is injected on any standard analog input pin，as this significantly reduced，further
Analog input pin on an ongoing conversion accuracy．Recommendations on the pins may produce a standard analog reverse injection current（between pin and ground）increases a SCHOTT
Group diode．

If positive injection current，as long as in the first 5．3．12 Given in Section INNJ（PIN）with $\Sigma I_{\text {INJ }}$（PIN） Within range，it will not affect ADC Accuracy．
3．A comprehensive assessment to ensure，not tested in production．

1．ADC DC precision value is measured after internal calibration．

2．Optimal performance can be limited V_{DD} ，frequency， $\mathrm{V}_{\text {REF }}$ And at a temperature range achieved．

3．ADC Accuracy of the relationship between the injection current and the reverse：the need to avoid reverse current is injected on any standard analog input pin，as this significantly reduced，further Analog input pin on an ongoing conversion accuracy．Recommendations on the pins may produce a standard analog reverse injection current（between pin and ground）increases a SCHOTT Group diode．

4．A comprehensive assessment to ensure，not tested in production．

（1）The actual ADC Examples of the conversion curve
（2）Ideal curve
（3）The actual transition point connection
E_{T} Integrated error：the actual curve with a maximum deviation between the ideal transfer curve．

Eo Offset error：the first transition of the actual curve and the ideal curve of the transition time difference．
E_{G} Gain error：the last transition and the last transition of the difference between the ideal transfer curve in the actual transfer curve．
Ed Differential linearity error：the actual curve over ho ho from the distance（1LSB）Difference．among them 1 LSB ${ }_{\text {IDEAL }}=\mathrm{V}_{\text {ref }+/ 4096 \text {（ or }}$ $V_{\text {dDA／}} 4096$ ，Determined by the package）．

El Integral linearity error：maximum deviation between the actual conversion curve and the end connection．

1．related $R_{\text {ain }}, R_{\text {adc }}$ with $C_{a d c}$ Values，see Table 46 ．

2．Cparasitic Show PCB（Welding and PCB Quality－related layout）the parasitic capacitance at the pad（about 7pF）．larger Cparasitic It will reduce the value of the fine converter Degree，the solution is to reduce the $f_{A D C}$ ．

PCB Design Recommendations

in accordance with $V_{\text {ref }}+$ Whether $V_{\text {doa }}$ Is connected，the power supply must be decoupled in Figure 25 Or diagram 26 connection．Figure 10nF Ceramic capacitor capacitance must be，they should be as close as possible MCU chip．

Map 25 Power supply and the reference power supply decoupling circuit（ $\mathrm{V}_{\text {REF }}+$ Not with $\mathrm{V}_{\text {dDA }}$ Connected）
1．VreF＋with Vref－Enter only appear in $\mathbf{1 0 0}$ Feet above product．

Map 26 Power supply and the reference power supply decoupling circuit（ $\mathrm{V}_{\text {rEF }}+$ versus $\mathrm{V}_{\text {dDA }}$ Connected）
1．$V_{\text {ref }}+$ with $V_{\text {ref－}}$ Enter only appear in 100 Feet above product．

5．3．18 Temperature sensor characteristics

table 47 Temperature sensor characteristics

symbol	parameter	Min Typ Max Units			${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{L}(1)}$	$\mathrm{V}_{\text {Sense }}$ Linearity with respect to temperature		± 1	± 2	
Avg＿Slope（1）	Average slope	4.0	4.3	$4.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	
$\mathrm{V}_{25}{ }_{(1)}$	in $25^{\circ} \mathrm{C}$ When the voltage	1.61	1.62	1.63	V
t start（2）	Settling Time	4		10	$\mu \mathrm{s}$
Ts＿temp（2）（3）	When reading the temperature，ADC sampling time			17.1	$\mu \mathrm{s}$

1．A comprehensive assessment to ensure，not tested in production．
2．Guaranteed by design，not tested in production．

3．The shortest sampling time can be recycled many times determined by the application through．

6．Package Characteristics

6．1 Package mechanical data

Grade	Millimeter		
	Minim	Typical values	Maximum
A	0.70	0.75	0.80
A1	\bigcirc	0.02	0.05
A3	0．203 REF		
b	0.20	0.25	0.30
D	6 BSC		
E	6 BSC		
e	0．5 BSC		
D2	4.05	4.15	4.25
E2	4.05	4.15	4.25
K	0．375 REF		
L	0.45	0.55	0.65
aaa	0.1		
ccc	0.1		
eee	0.08		
bbb	0.1		
fff	0.1		

SECTION B－B

Map 28LQFP100， 100 Pin low profile quad flat package of FIG．
table 49LQFP100， 100 Low square cross section pin flat package data

DETAIL: F

Map 29 LQFP64， 64 Pin low profile quad flat package of FIG．

Map 30LQFP48， 48 Pin low profile quad flat package of FIG．
table 51LQFP48， 48 Low square cross section pin flat package data

Grade	Millimeter		
	Minimum	Typical values	Maximum
A	0.05	-	1.60
A1	1.35	-	0.15
A2	0.59	0.64	1.45
A3	0.18	-	0.69
b	0.17	0.20	0.26
b1	0.13	-	0.23
c	0.12	0.13	0.17
C1	6.90	9.00	0.14
D1	8.80	7.00	9.20
E	6.90	7.00	9.20
E1	8.10	$0.50 B S C$	7.20
eB		-	8.25
L			

L1	1．00REF		
k	0	-	7°

6．2 Thermal Characteristics

The maximum junction temperature of the chip（ T_{J} max）Must not exceed the table 6 Given range of values．The
maximum junction temperature of the chip（ $T_{\jmath} \max$ ）Expressed in degrees Celsius，the following formula can be used：

$$
T_{J} \max =T_{A} \max +\left(P_{D} \max \times \Theta_{J A}\right)
$$

among them：
－$\quad \mathrm{T}_{\mathrm{A}}$ max It is the maximum ambient temperature，with ${ }^{\circ} \mathrm{C} \mathrm{He} \mathrm{said}$,
－$\quad \Theta_{\mathrm{JA}}$ Is the junction to ambient thermal resistance of the package，with ${ }^{\circ} \mathrm{C} / \mathrm{W}$ Labeling，

－\quad Int \max Yes I do with $V_{\text {do }}$ The product，in watts（ Watt）Said，it is the maximum internal power dissipation of the chip．
$P_{1 / o}$ max It is the maximum power consumption for all output pins：

$$
\mathrm{P}_{\text {I/ O }} \max =\Sigma\left(\mathrm{V}_{\mathrm{oL}} \times \mathrm{loL}_{\mathrm{oL}}\right)+\Sigma\left(\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{OH})} \times \mathrm{l}_{\mathrm{OH}}\right),\right.
$$

Consider applications I／O The actual low and high Vot／lot with $\mathrm{VoH} / \mathrm{IoH}$ ．
table 52 Thermal characteristics of the package

symbol	parameter	Value Unit	
$\Theta_{J A}$	Junction the heat resistance of the environment－－LQFP100－14 $\times 14 \mathrm{~mm} / 0.5 \mathrm{~mm}$ spacing	46	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Junction the heat resistance of the environment－－LQFP64－10 $\times 10 \mathrm{~mm} / 0.5 \mathrm{~mm}$ spacing	45	
	Junction the heat resistance of the environment－－LQFP48－7×7mm／0．5mm spacing	55	
	Junction the heat resistance of the environment－－QFN36－6 $\times 6 \mathrm{~mm} / 0.5 \mathrm{~mm}$ spacing	18	

6．2．1．Reference Documents

 JESD51－2 The integrated circuit thermal environmental condition－Natural convection（still air）．See also www．jedec．org ．
7．Model name

8．Version History

date	version	Modify part
2018．01．18	Initial draft	
2018．04．20	1.0	Modify the map 3 The pin 80 And pin 81 The pin definitions；Table 14 Add clock 48MHz Typical values of the conditions；
2018．08．11	1.1	Add Table 15 Typical current consumption in the operation mode，the data processing code from the internal RAM Run；modify table 16 The clock 72 MHz Typical values of the conditions；
2018．10．10	1.2	Modify table 18 in flsE＿ext Maximum；modified table 26 in IdD unit $\mu \mathrm{A}$ for mA ；Modify table 47 in V_{25} The minimum，typical and maximum values．
2018．10．15	1.3	The device increases contrast／Ordering Information／model named chapters

[^0]: Parameters given in the table are the test results under normal operating conditions

[^1]: 1．It derived from a comprehensive assessment to the production $V_{\text {do }}$ max with f hclk max Conditions for the test．

[^2]: 1．$V_{D D}=3.3 V, T_{A}=-40 \sim 105^{\circ} \mathrm{C}$ Unless otherwise noted．

[^3]: 1．Remapping SPI1 Properties need to be further determined．

 2．Derived from a comprehensive assessment，not tested in production．

[^4]: 1．Guaranteed by design，not tested in production．

