HESTORE.HU

EN: This Datasheet is presented by the manufacturer.
Please visit our website for pricing and availability at www.hestore.hu.

LT1191

Ultrahigh Speed Operational Amplifier

feATURES

- Gain Bandwidth Product, $A_{V}=1: 90 \mathrm{MHz}$
- Slew Rate: 450V/ $\mu \mathrm{s}$
- Low Cost
- Output Current: $\pm 50 \mathrm{~mA}$
- Settling Time: 110ns to 0.1\%
- Differential Gain Error: 0.07%, $\left(R_{L}=1 k\right)$
- Differential Phase Error: 0.02ㅇ, ($\left.\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}\right)$
- High Open-Loop Gain: 20V/mV Min
- Single Supply 5V Operation
- Output Shutdown

APPLICATIONS

- Video Cable Drivers
- Video Signal Processing
- Fast Integrators
- Pulse Amplifiers
- D/A Current to Voltage Conversion

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 1191$ is a video operational amplifier optimized for operation on $\pm 5 \mathrm{~V}$ and a single 5 V supply. Unlike many high speed amplifiers, this amplifier features high open-loop gain, over 90dB, and the ability to drive heavy loads to a full-power bandwidth of 20MHz at $7 \mathrm{~V}_{\text {p-p. }}$. In addition to its very fast slew rate, the LT1191 features a unity-gain-stable bandwidth of 90 MHz .

Because the LT1191 is a true operational amplifier, it is an ideal choice for wideband signal conditioning, fast integrators, active filters, and applications requiring speed, accuracy and low cost.

The LT1191 is available in 8-pin PDIP and S0 packages with standard pinouts. The normally unused Pin 5 is used for a shutdown feature that shuts off the output and reduces power dissipation to a mere 15 mW .

[^0]
TYPICAL APPLICATION

Video MUX Cable Driver

Inverter Pulse Response

$A_{V}=-1, C_{L}=10 p F$ SCOPE PROBE

ABSOLUTG MAXImUM RATINGS

(Note 1)
Total Supply Voltage (V^{+}to V^{-}) 18V
Differential Input Voltage $\pm 6 \mathrm{~V}$
Input Voltage .. $\pm \mathrm{V}_{S}$
Output Short-Circuit Duration (Note 2) Continuous Operating Temperature Range
LT1191M (OBSOLETE) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ LT1191C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Maximum Junction Temperature $150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad

PACKAGE/ORDER InFORMATION

TOP VIEW	ORDER PART
bal 1 - \square^{8} bal	NUMBER
-1029	LT1191CN8
+1N 3 -6 OUT	LT1191CS8
$4 \square 5$ SHDN	S8 PART MARKING
N8 PACKAGE8-LEAD PDIP \quadS8 PACKAGE 8 -LEAD PLASTIC so	1191
	LT1191MJ8
J8 PACKAGE 8-LEAD CERDIP $T_{\text {max }}=150^{\circ} \mathrm{C}, \theta_{\mu}=100^{\circ} \mathrm{CM}$	LT1191CJ8
OBSOLETE PACKAGE	

Consult LTC Marketing for parts specified with wider operating temperature ranges.
eLECTRICAL CHARACTERISTICS
$V_{S}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, Pin 5 open circuit unless otherwise noted.

SYMBOL	PARAMETER			LT1191M/C			UNITS
			CONDITIONS	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		N8 Package S0-8 Package		1	$\begin{aligned} & 5 \\ & 9 \end{aligned}$	mV mV
IOS	Input Offset Current				0.2	1.7	$\mu \mathrm{A}$
I_{B}	Input Bias Current				± 0.5	± 2.5	$\mu \mathrm{A}$
e_{n}	Input Noise Voltage		$\mathrm{f}_{0}=10 \mathrm{kHz}$		25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current		$\mathrm{f}_{0}=10 \mathrm{kHz}$		4		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
R_{IN}	Input Resistance	Differential Mode			70		$\mathrm{k} \Omega$
		Common Mode			5		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		$A_{V}=+1$		2		pF
	Input Voltage Range		(Note 3)	-2.5		3.5	V
CMRR	Common Mode Rejection Ratio		$\mathrm{V}_{\text {CM }}=-2.5 \mathrm{~V}$ to 3.5 V	60	75		dB
PSRR	Power Supply Rejection Ratio		$\mathrm{V}_{\mathrm{S}}= \pm 2.375 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	60	75		dB
AVOL	Large-Signal Voltage Gain		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{0}= \pm 3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{0}= \pm 3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{0}= \pm 5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 20 \\ 4 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 45 \\ 9 \\ 12 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
$V_{\text {OUT }}$	Output Voltage Swing		$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	$\begin{aligned} & \pm 3.7 \\ & \pm 6.7 \end{aligned}$	$\begin{aligned} & \pm 4 \\ & \pm 7 \end{aligned}$		V
SR	Slew Rate		$A_{V}=-2, R_{L}=1 \mathrm{k}$ (Notes 4, 9)	325	450		V/ $\mu \mathrm{s}$
FPBW	Full-Power Bandwidth		$\mathrm{V}_{0}=6 \mathrm{~V}_{\text {P-P }}$ (Note 5)	17.2	23.9		MHz
GBW	Gain Bandwidth Product				90		MHz
$\mathrm{t}_{\mathrm{r} 1}, \mathrm{t}_{\mathrm{f} 1}$	Rise Time, Fall Time		$A_{V}=50, V_{0}= \pm 1.5 \mathrm{~V}, 20 \%$ to 80\% (Note 9)	100	130	160	ns
$\mathrm{t}_{\mathrm{r} 2}, \mathrm{t}_{\mathrm{f} 2}$	Rise Time, Fall Time		$A_{V}=1, V_{0}= \pm 125 \mathrm{mV}, 10 \%$ to 90%		1.25		ns
tPD	Propagation Delay		$A_{V}=1, V_{0}= \pm 125 \mathrm{mV}, 50 \%$ to 50%		2.2		ns
	Overshoot		$A_{V}=1, V_{0}= \pm 125 \mathrm{mV}$		25		\%
$\mathrm{t}_{\text {s }}$	Settling Time		3V Step, 0.1\% (Note 6)		110		ns

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{S}}= \pm 5, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, Pin 5 open circuit unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	LT1191M/C			UNITS
			MIN	TYP	MAX	
Diff A_{V}	Differential Gain	$\mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~A}_{V}=2$ (Note 7)		0.15		\%
Diff Ph Is	Differential Phase	$R_{L}=150 \Omega, A_{V}=2$ (Note 7)		0.09		Degp-p
	Supply Current			32	38	mA
	Shutdown Supply Current	Pin 5 at V^{-}		1.3	2	mA
$\underline{\text { ISHDN }}$	Shutdown Pin Current	Pin 5 at V^{-}		20	50	$\mu \mathrm{A}$
t_{ON}	Turn On Time	Pin 5 from V^{-}to Ground, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		100		ns
$\mathrm{t}_{\text {OFF }}$	Turn Off Time	Pin 5 from Ground to $\mathrm{V}^{-}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		400		ns

$V_{S^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}{ }^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, Pin 5 open circuit unless otherwise noted.

| SYMBOL | PARAMETER | CONDITIONS | LT1191M/C
 TYP | | MAX |
| :--- | :--- | :--- | :--- | :--- | :---: | UNITS

The \bullet denotes the specifications which apply over the full operating temperature range of $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$.
$V_{S}= \pm 5 \mathrm{~V}$, Pin 5 open circuit unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	$\begin{aligned} & \text { T1191N } \\ & \text { TYP } \end{aligned}$	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	N8 Package	\bullet		2	8	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Input $\mathrm{V}_{\text {OS }}$ Drift		\bullet		8		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		\bullet		0.2	2	$\mu \mathrm{A}$
I_{B}	Input Bias Current		\bullet		± 0.5	± 2.5	$\mu \mathrm{A}$
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=-2.5 \mathrm{~V}$ to 3.5 V	\bullet	55	70		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2.375 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	55	70		dB
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & R_{L}=1 \mathrm{k}, \mathrm{~V}_{0}= \pm 3 \mathrm{~V} \\ & R_{L}=100, V_{0}= \pm 3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{gathered} 16 \\ 2 \end{gathered}$	$\begin{gathered} 32 \\ 5 \end{gathered}$		V / mV V/mV
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$	\bullet	± 3.7	± 3.9		V
Is	Supply Current		\bullet		32	38	mA
	Shutdown Supply Current	Pin 5 at V^{-}(Note 8)	\bullet		1.5	2.5	mA
ISHDN	Shutdown Pin Current	Pin 5 at V^{-}	\bullet		20		$\mu \mathrm{A}$

ELECTRICALCHPRACTERISTCS The o denotes the specifications which apply over the full operating

temperature range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, Pin 5 open circuit unless otherwise noted.

| SYMBOL | PARAMETER | CONDITIONS | LT1191C
 TYP | | MAX |
| :--- | :--- | :--- | :--- | :--- | :--- | UNITS

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.
Note 2: A heat sink is required to keep the junction temperature below absolute maximum when the output is shorted.
Note 3: Exceeding the input common mode range may cause the output to invert.
Note 4: Slew rate is measured between $\pm 1 \mathrm{~V}$ on the output, with a $\pm 1.5 \mathrm{~V}$ input step.
Note 5: Full-power bandwidth is calculated from the slew rate measurement:

Note 6: Settling time measurement techniques are shown in "Take the Guesswork Out of Settling Time Measurements," EDN, September 19, 1985. $A_{V}=-1, R_{L}=1 k$.

Note 7: NTSC (3.58MHz). For $R_{L}=1 k$, Diff $A_{V}=0.07 \%$, Diff Ph $=0.02^{\circ}$.
Note 8: See Applications section for shutdown at elevated temperatures. Do not operate the shutdown above $\mathrm{T}_{\mathrm{J}}>125^{\circ} \mathrm{C}$.
Note 9: AC parameters are 100\% tested on the ceramic and plastic DIP packaged parts (J and N suffix) and are sample tested on every lot of the S0 packaged parts (S suffix).

Optional Offset Nulling Circuit

INPUT OFFSET VOLTAGE CAN BE ADJUSTED OVER A $\pm 100 \mathrm{mV}$ RANGE WITH A $1 \mathrm{k} \Omega$ TO 10k Ω POTENTIOMETER LT1191•TA03

TYPICAL PGRFORmANCE CHARACTERISTICS

LT1191•TPC01
Equivalent Input Noise Voltage vs Frequency

LT1191•TPC04
Shutdown Supply Current
vs Temperature vs Temperature

LT1191•TPC07

Input Bias Current
vs Temperature

LT1191•TPC02
Equivalent Input Noise Current vs Frequency

LT1191•TPC05
Open-Loop Voltage Gain
vs Temperature

LT1191•TPC08

Common Mode Voltage vs Supply Voltage

LT1191•TPC03

LT1191•TPC06

Open-Loop Voltage Gain vs Load Resistance

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

LT1191•TPC19
Large-Signal Transient Response

$A_{V}=1, C_{L}=10 \mathrm{pF}$ SCOPE PROBE

Output Voltage Step
vs Settling Time, $A_{V}=-1$

LT1191•TPC20
Small-Signal Transient Response

$A_{V}=1$, SMALL-SIGNAL RISE TIME, WITH FET PROBES

Output Voltage Step vs Settling Time, $\mathrm{A}_{V}=1$

Output Overload

$A_{V}=-1, V_{I N}=12 V_{P-P}$

APPLICATIONS INFORMATION

Power Supply Bypassing

The LT1191 is quite tolerant of power supply bypassing. In some applications a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor placed $1 / 2$ inch from the amplifier is all that is required. A scope photo of the amplifier output with no supply bypassing is used to demonstrate this bypassing tolerance, $R_{L}=1 \mathrm{k} \Omega$.

No Supply Bypass Capacitors

Supply bypassing can also affect the response in the frequency domain. It is possible to see a slight rise in the frequency response at 130 MHz depending on the gain configuration, supply bypass, inductance in the supply leads and printed circuit board layout. This can be further minimized by not using a socket.

Closed-Loop Voltage Gain vs Frequency

LT1191•TA05

In most applications, and those requiring good settling time, it is important to use multiple bypass capacitors. A $0.1 \mu \mathrm{~F}$ ceramic disc in parallel with a $4.7 \mu \mathrm{~F}$ tantalum is recommended. Two oscilloscope photos with different bypass conditions are used to illustrate the settling time characteristics of the amplifier. Note that although the output waveform looks acceptable at 1V/DIV, when amplified to $1 \mathrm{mV} / \mathrm{DIV}$ the settling time to 2 mV is 2.61μ s for the $0.1 \mu \mathrm{~F}$ bypass; the time drops to 143 ns with multiple bypass capacitors.

Settling Time Poor Bypass

Settling Time Good Bypass

APPLICATIONS INFORMATION

Cable Terminations

The LT1191 operational amplifier has been optimized as a low cost video cable driver. The $\pm 50 \mathrm{~mA}$ guaranteed output current enables the LT1191 to easily deliver $7.5 \mathrm{~V}_{\text {p-p }}$ into 100Ω, while operating on $\pm 5 \mathrm{~V}$ supplies or $2.6 \mathrm{~V}_{\text {P-p }}$ on a single 5V supply.

When driving a cable it is important to terminate the cable to avoid unwanted reflections. This can be done in one of two ways: single termination or double termination. With single termination, the cable must be terminated at the receiving end (75Ω to ground) to absorb unwanted energy. The best performance can be obtained by double termination (75Ω in series with the output of the amplifier, and 75Ω to ground at the other end of the cable). This termination is preferred because reflected energy is absorbed at each end of the cable. When using the double termination technique it is important to note that the signal is attenuated by a factor of 2 , or 6 dB . This can be compensated for by taking a gain of 2, or 6dB in the amplifier. The cable driver has a -3 dB bandwidth of 100 MHz while driving the 150Ω load. Note the response can be improved by lowering the impedance of the feedback elements.

Double Terminated Cable Driver

Cable Driver Voltage Gain vs Frequency

Using the Shutdown Feature

The LT1191 has a unique feature that allows the amplifier to be shut down for conserving power or for multiplexing several amplifiers onto a common cable. The amplifier will shut down by taking Pin 5 to V^{-}. In shutdown, the amplifier dissipates 15 mW while maintaining a true high impedance output state of $15 \mathrm{k} \Omega$ in parallel with the feedback resistors. The amplifiers must be used in a noninverting configuration for MUX applications. In inverting configurations the input signal is fed to the output through the feedback components. The following scope photos show that with very high R_{L}, the output is truly high impedance; the output slowly decays toward ground. Additionally, when the output is loaded with as little as $1 \mathrm{k} \Omega$ the amplifier shuts off in 400ns. This shutoff can be under the control of HC CMOS operating between OV and -5 V .

Output Shutdown

1MHz SINE WAVE GATED OFF WITH SHUTDOWN PIN, $A_{V}=1, R_{L}=1 \mathrm{k} \Omega$

LT1191

APPLICATIONS INFORMATION

The ability to maintain shutoff is shown on the curve Shutdown Supply Current vs Temperature in the Typical Performance Characteristics section. At very high elevated temperatures it is important to hold the SHDN pin close to the negative supply to keep the supply current from increasing.

Murphy Circuits

There are several precautions the user should take when using the LT1191 in order to realize its full capability. Although the LT1191 can drive a 30 pF load, isolating the capacitance with 10Ω can be helpful. Precautions primarily have to do with driving large capacitive loads.

Other precautions include:

1. Use a ground plane (see Design Note 50, High Frequency Amplifier Evaluation Board).
2. Do not use high source impedances. The input capacitance of $2 p F$ and $R_{S}=10 \mathrm{k}$, for instance, will give an $8 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth.
3. PC board socket may reduce stability.
4. A feedback resistor of 1 k or lower reduces the effects of stray capacitance at the inverting input. (For instance, closed-loop gain of 2 can use $R_{F B}=300 \Omega$ and $\mathrm{R}_{\mathrm{G}}=300 \Omega$.)

Driving Capacitive Load

$A_{V}=-1$, IN DEMO BOARD, $C_{L}=30 \mathrm{pF}$

Driving Capacitive Load

$A_{v}=-1$, IN DEMO BOARD, $C_{L}=30 \mathrm{pF}$ WITH 10Ω ISOLATING RESISTOR

Murphy Circuits

An Unterminated Cable Is a Large Capacitive Load

A 1X Scope Probe Is a
Large Capacitive Load

A Scope Probe on the Inverting Input Reduces Phase Margin

SImPLIFIED SCHEmATIC

*SUBSTRATE DIODE, DO NOT FORWARD BIAS

PACKAGE DESCRIPTION

PACKAGE DESCRIPTION

N8 Package
8-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm)

S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006 " (0.152 mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}$ (0.254 mm) PER SIDE

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1363	High Speed Operational Amplifier	70 MHz Gain Bandwidth, $1000 \mathrm{~V} / \mu \mathrm{S}$ Slew Rate, $\mathrm{I}_{\mathrm{S}}=7.5 \mathrm{~mA} \mathrm{Max}$
LT1813	High Speed Operational Amplifier	100 MHz Gain Bandwidth, $750 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate, $\mathrm{I}_{\mathrm{S}}=3.6 \mathrm{~mA}$ Max

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
LT1191CN8\#PBF LT1191CS8\#TR LT1191CS8\#TRPBF LT1191CN8 LT1191CS8 LT1191CS8\#PBF

[^0]: $\mathbf{\Sigma \boldsymbol { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation.

