

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at www.hestore.hu.

SIEMENS

LED Driver for Light Band Displays

UAA 180

Bipolar IC

Integrated circuit for driving 12 light emitting diodes. Corresponding to the input voltage, LEDs forming a light band are controlled similar to a thermometer scale.

By using an appropriate circuitry the brightness of the LEDs can be varied and the light passage between two adjacent LEDs can be set between "smooth" and "abrupt".

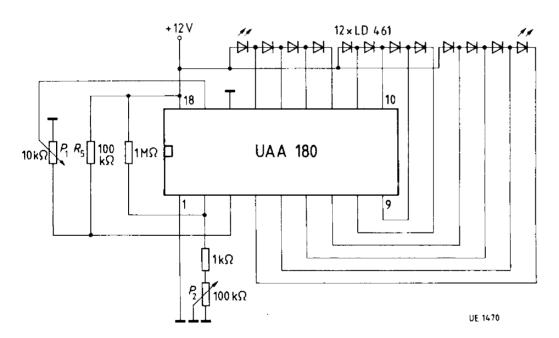
Туре	Ordering Code	Package
UAA 180	Q67000-A1104	P-DIP-18

Absolute Maximum Ratings

Parameter	Symbol	Limit Values	Unit
Supply voltage	Vs	18	٧
Input voltage	V ₃ V ₁₆ V ₁₇	6 6 6	V V V
Storage temperature range	Tstg	- 40 to 125	°C
Junction temperature	T _i	150	.c
Thermal resistance (system-air)	R th SA	78	K/W

Operating Range

Supply voltage	Vs	10 to 18	V
Ambient temperature	TA	- 25 to 85	°C


760 01.90

Characteristics

Vs = 12 V; TA = 25 °C

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
Current consumption (I ₂ = 0) (without LED current)	I ₁₈		5.5	8.2	mA
Input currents V3 - V16 < 2 V	I3 I16 I17		0.3 0.3 0.3	1 1 1	μ Α μ Α μ Α
Voltage difference for smooth light transition	ΔV16/3	1.0			v
Voltage difference for abrupt light transition	ΔV16/3	4.0			v
Diode current per diode	ID		10		mA
Tolerance of LED forward voltages	$\Delta V_{ m D}$			1.0	V

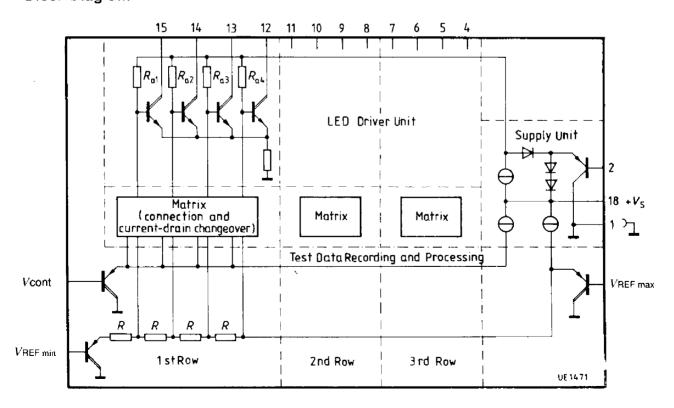
Measurement Circuit

P 1 Light Band Test P 2 Brightness Test

Scale Display with Light Emitting Diodes

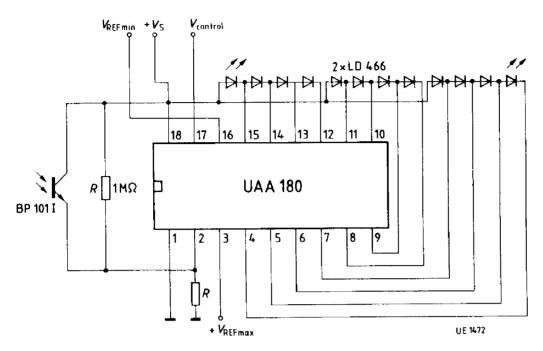
Scale displays by means of a growing light band are particularly suitable for the measuring of approximate values. Applications of this kind are level sensors, VU meters, tachometers, field strength indicators etc. When applying the displays in measuring equipment, multicolored LEDs can be used as range limitation.

The voltage difference between pins 16 and 3 thereby corresponds to the possible indication range. $\Delta V_{16/3}$ defines at the same time the light passage between two diodes. With $\Delta V_{16/3} \ge 1$ V, the light band glides smoothly along the scale. With increasing voltage difference, the passage becomes more abrupt. With $\Delta V_{16/3}$, approx. 4 V, the light band jumps from diode to diode.

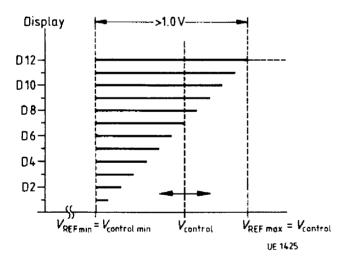

Each quartet must consist of identical diodes in order to maintain its functional characteristics.

It is therefore possible to design the first and third quartet as diodes emitting the color red and the second quartet as diodes emitting the color green to delineate a certain operational area.

Pin 2 serves to determine the diode current. Corresponding to the desired light intensity, the forward current of the diodes is variably linear in the range *I_t* approx. 0 to 10 mA.


Application circuit 1 shows the possibility of designing this resistance to be adjustable by means of a phototransistor BP 101, in order to adapt the light intensity to changing ambient brightness. The adjusting range of the diode current lies between I_f approx. 5 mA (BP 101 not lit) and I_f approx. 10 mA (BP 101 fully lit). If pin 2 is open the diode current is 10 mA.

Block Diagram


Siemens Aktiengesellschaft

Application Circuit 1

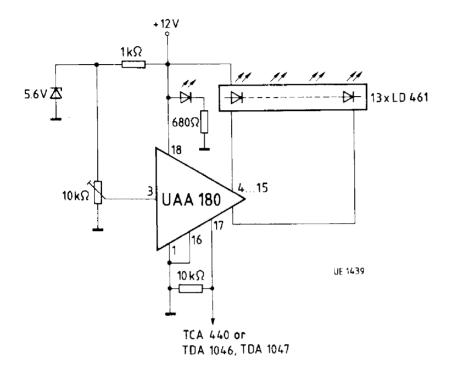
 $R = 2.2 \text{ k}\Omega...100 \text{ k}\Omega$


LED display versus control current

If a quartet does not need the full number of display diodes and if the first connected diodes shall be left luminous at full driving, bridges have to be inserted replacing the missing LEDs. Otherwise the first diodes of the quartet switch off when their display range is exceeded.

Siemens Aktiengesellschaft

Application Circuit 2 for cascading several UAA 180 ICs (up to 7)



Siemens Aktiengesellschaft

764

Application Circuit 3

for field strength indication

