

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at www.hestore.hu.

TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TD62783AP,TD62783AFW,TD62784AP,TD62784AFW (Manufactured by Toshiba Malaysia)

8CH HIGH-VOLTAGE SOURCE DRIVER

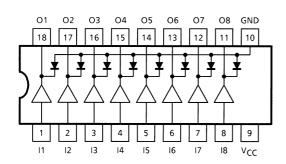
The TD62783AP / AFW Series are comprised of eight source current Transistor Array.

These drivers are specifically designed for fluorescent display applications.

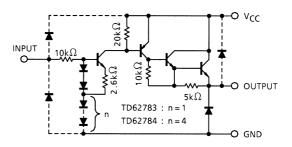
Applications include relay, hammer and lamp drivers.

FEATURES

- $\begin{array}{ll} \bullet & \mbox{High output voltage} & \mbox{Type-AP, AFW } : \mbox{V}_{\rm CC} = 50 \mbox{ V MIN.} \\ & \mbox{Type-F} & : \mbox{V}_{\rm CC} = 35 \mbox{ V MIN.} \\ \end{array}$
- Output current (single output) IOUT = -500 mA MIN.
- Output clamp diodes
- Single supply voltage
- Input compatible with various types of logic
- Package Type-AP : DIP-18 pinPackage Type-AFW: SOL-18 pin


TYPE	DESIGNATION			
TD62783AP / AFW	TTL, 5 V CMOS			
TD62784AP / AFW	6~15 V PMOS, CMOS			

TD62783AP TD62784AP DIP18-P-300-2.54F TD62783AFW TD62784AFW SOL18-P-300-1.27


Weight

DIP18-P-300-2.54F: 1.478 g (Typ.) SOL18-P-300-1.27: 0.48 g (Typ.)

PIN CONNECTION (TOP VIEW)

SCHEMATICS (EACH DRIVER)

Note: The input and output parasitic diodes cannot be used as clamp diodes.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT	
Supply Voltage		V _{CC}	50	V	
Output Current		lout	-500	mA / ch	
Input Voltage		V _{IN} (Note 1)	15	V	
input voitage	voltage		30	V	
Clamp Diode Reverse Vo	p Diode Reverse Voltage		50	V	
Clamp Diode Forward Cu	amp Diode Forward Current		500	mA	
Power Dissipation	AP	P _D	1.47	W	
Power Dissipation	AFW	רט	0.92 / 1.31 (Note 3)	VV	
Operating Temperature		T _{opr}	-40~85	°C	
Storage Temperature		T _{stg}	T _{stg} -55~150		

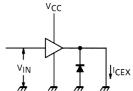
Note 1: Only TD62783AP / AFW Note 2: Only TD62784AP / AFW

Note 3: On Glass Epoxy PCB (75 \times 114 \times 1.6 mm Cu 20%)

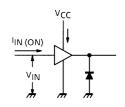
RECOMMENDED OPERATING CONDITIONS (Ta = -40~85°C)

CHARACTERISTIC		SYMBOL	TEST CONDITION		MIN	TYP.	MAX	UNIT		
Supply Voltage		V _{CC}	_		_	_	50	V		
Output Current AFW		lout	Ta = 85°C T _j = 120°C T _{pw} = 25ms	Duty = 10% 8Circuits	_	_	-260	mA /		
				Duty = 50% 8Circuits	_	_	-59			
				Duty = 10% 8Circuits	_	_	-180			
		AFW			Duty = 50% 8Circuits	_	_	-38		
Input TD62783AP / / Voltage TD62784AP / /		/ AFW	V	_			_	12	V	
		TD62784AP	/ AFW	V_{IN}	_			_	24	V
Input	Output On	TD62783AP	/ AFW	Vivi (ON)	_		2.0	5.0	15	V
		TD62784AP	/ AFW	V _{IN (ON)}	_		4.5	12.0	30	
Voltage	Output Off	TD62783AP	/ AFW	V	_		0	_	0.8	
		TD62784AP	/ AFW	V _{IN (OFF)}	_		0	_	2.0	
Clamp Diode Reverse Voltage AFW		Vo			_	_	50	V		
		V_{R}	_		_	_	35			
Clamp Diode Forward Current		l _F			_	_	400	mA		
Power Dissipation AP AFW		P _D	Ta = 85°C			_	0.76	W		
		AFW	' D	Ta = 85° C (Note)			_	0.48	VV	

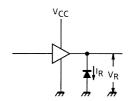
Note: On Glass Epoxy PCB (75 × 114 × 1.6 mm Cu 20%)

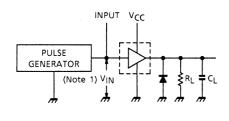

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHAF	CHARACTERISTIC SYMBOL (TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Output Leakage	e Current	I _{CEX}	1	V _{CC} = V _{CC MAX} . V _{IN} = 0.4 V Ta = 25°C	4 V 100		μΑ	
Output Saturation Voltage		V _{CE} (sat)	2	$V_{IN} = V_{IN (ON)},$ $I_{OUT} = -350 \text{ mA}$	_	_	2.0	V
				V _{IN} = V _{IN} (ON), I _{OUT} = -225 mA	_	_	1.9	
				V _{IN} = V _{IN} (ON), I _{OUT} = -100 mA	_	_	1.8	
	TD62783AP / AFW	- In (On)		V _{IN} = 2.4 V	_	36	52	μΑ
Input Current			3	V _{IN} = 3.85 V	_	180	260	
	TD62784AP / AFW			V _{IN} = 5 V	_	92	130	
				V _{IN} = 12 V	_	790	1130	
	TD62783AP / AFW	V	4	V _{CE} = 2.0 V	_	_	2.0	V
lanut Valtana	TD62784AP / AFW	V _{IN} (ON)		I _{OUT} = −350 mA	= −350 mA — —	_	4.5	
Input Voltage	TD62783AP / AFW	M		I _{OUT} = -500 μA	0.8	_	_	
	TD62784AP / AFW	V _{IN} (OFF)			2.0	_	_	
Supply Current		I _{CC (ON)}	3	V _{IN} = V _{IN (ON)} , V _{CC} = 50 V	_	_	2.5	mA / ch
Clamp Diode Reverse Current		I _R	5	V _R = 50 V	_	_	50	μΑ
Clamp Diode Forward Voltage		V _F	6	I _F = 350 mA	_	_	2.0	V
Turn-On Delay		ton	7	V _{CC} = V _{CC MAX.} R _L = 125 Ω	_	0.15	_	- µs
Turn-Off Delay		t _{OFF}		$C_L = 15 \text{ pF}, R_L = 88 \Omega (F)$	_	1.8	_	

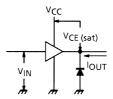

3

TEST CIRCUIT

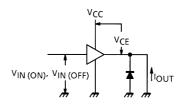

1. ICEX


3. I_{IN (ON)}, I_{CC}

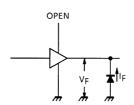
5. I_R

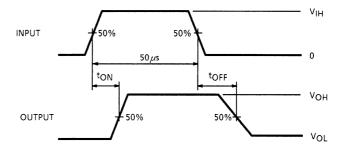


7. ton, toff



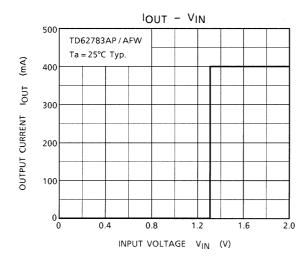
- Note 1: Pulse width 50 µs, duty cycle 10%
 - Output impedance 50 Ω , $t_{f} \le 5$ ns, $t_{f} \le 10$ ns
- Note 2: C_L includes probe and jig capacitance

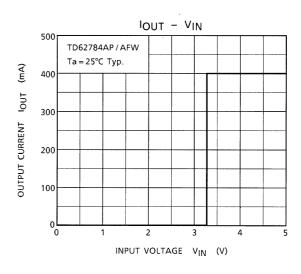

2. VCE (sat)

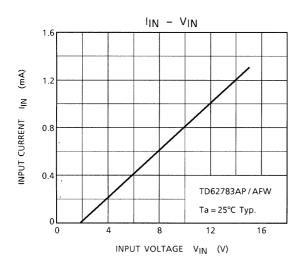


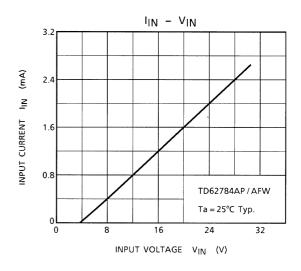
VIN (ON), VIN (OFF)

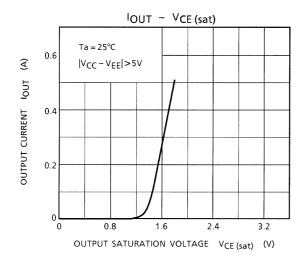
6. V_F

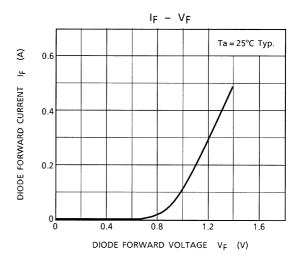


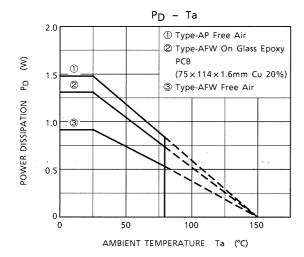

PRECAUTIONS for USING

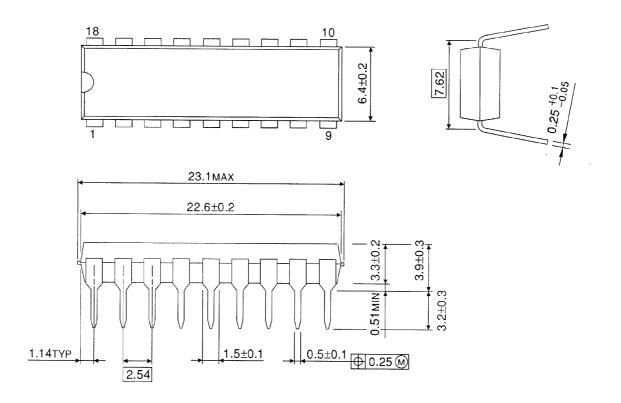

This IC does not integrate protection circuits such as overcurrent and overvoltage protectors.


Thus, if excess current or voltage is applied to the IC, the IC may be damaged. Please design the IC so that excess current or voltage will not be applied to the IC.


Utmost care is necessary in the design of the output line, VCC and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

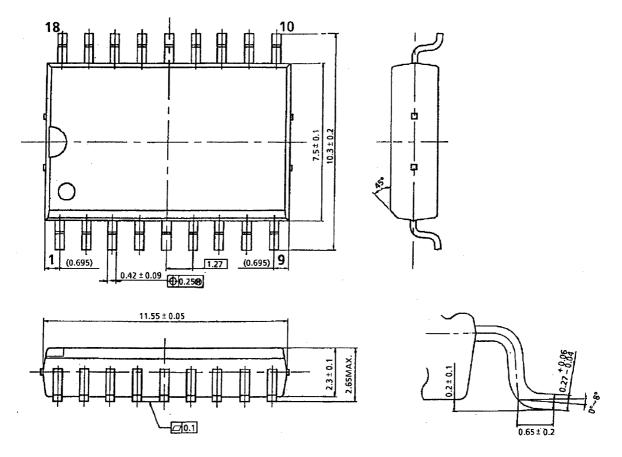






6

PACKAGE DIMENSIONS


DIP18-P-300-2.54F Unit: mm

Weight: 1.478 g (Typ.)

PACKAGE DIMENSIONS

SOL18-P-300-1.27 Unit: mm

8

Weight: 0.48 g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.