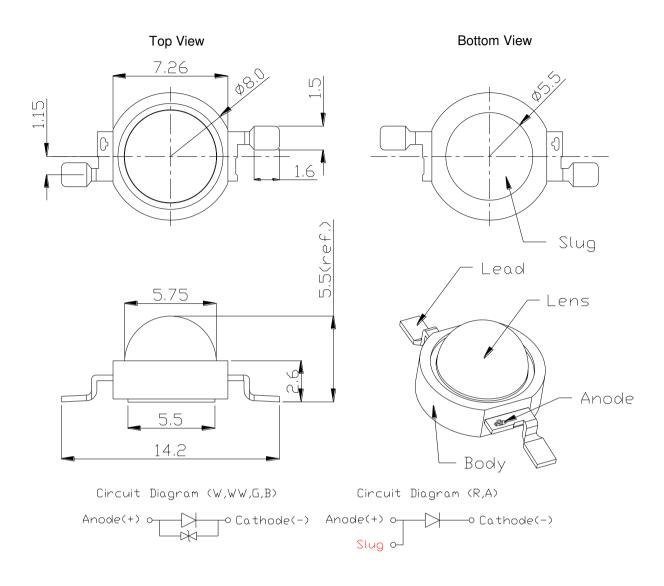


EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at <u>www.hestore.hu</u>.

ProLight PM2E-1LxE-xx 1W Power LED Technical Datasheet Version: 1.7


Features

- Good color uniformity
- Industry best moisture sensitivity level JEDEC Level 1
- Lead free reflow soldering
- RoHS compliant
- More energy efficient than incandescent and most halogen lamps
- Low Voltage DC operated
- Instant light (less than 100ns)
- No UV

Typical Applications

- Reading lights (car, bus, aircraft)
- Portable (flashlight, bicycle)
- Uplighters/Downlighters
- Decorative/Entertainment
- Bollards/Security/Garden
- Cove/Undershelf/Task
- Indoor/Outdoor Commercial and Residential Architectural
- Automotive Ext (Stop-Tail-Turn, CHMSL, Mirror Side Repeat)
- LCD backlights

Emitter Mechanical Dimensions

Notes:

- 1. The Anode side of the device is denoted by a hole in the lead frame.
- 2. Electrical insulation between the case and the board is required. Do not electrically connect either the anode or cathode to the slug.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. Unless otherwise indicated, tolerances are \pm 0.20mm.
- 6. Please do not bend the leads of the LED, otherwise it will damage the LED.
- 7. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.
- 8. The LEDs are STATIC SENSITIVE device. ESD protection or surge voltages shall be considered and taken care in the initial design stage, and whole production process.

*The appearance and specifications of the product may be modified for improvement without notice.

Radiation	Color	Part Number	Luminous Fl	CRI	
Pattern	COIOI	Emitter	Minimum	Typical	Minimum
	White	PM2E-1LWE	120	154	70
	Warm White	PM2E-1LVE-R7	110	138	70
	Warm White	PM2E-1LVE-R8	100	126	80
Lambertian	Red	PM2E-1LRE	51.7	67	-
	Amber	PM2E-1LAE	51.7	73	-
	Green	PM2E-1LGE	87.4	120	-
	Blue	PM2E-1LBE	23.5	29	-

Flux Characteristics at 350mA, T_J = 25°C

• ProLight maintains a tolerance of ± 7% on flux and power measurements.

• ProLight maintains a tolerance of ± 2 on CRI measurements.

• Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics at 350mA, T_J = 25°C

Calar	Fo	orward Voltage V _F	Thermal Resistance	
Color	Min.	Тур.	Max.	Junction to Slug (°C/ W)
White	2.85	3.30	3.85	10
Warm White	2.85	3.30	3.85	10
Red	1.75	2.20	3.00	10
Amber	1.75	2.20	3.00	10
Green	2.85	3.40	3.85	10
Blue	2.85	3.30	3.85	10

• ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Optical Characteristics at 350mA, T_J = 25°C

Color		ninant Wavelengtl olor Temperature		Total included Angle (degrees)	Viewing Angle (degrees)
COIOI	Min.	Тур.	Max.	θ _{0.90V}	2 θ _{1/2}
White	4100 K	5500 K	10000 K	180	130
Warm White	2700 K	3300 K	4100 K	180	130
Red	613.5 nm	623 nm	631 nm	180	130
Amber	587 nm	592 nm	597 nm	180	130
Green	515 nm	525 nm	535 nm	180	130
Blue	455 nm	465 nm	475 nm	180	130

• ProLight maintains a tolerance of ± 1nm for dominant wavelength measurements.

• ProLight maintains a tolerance of ± 5% for CCT measurements.

Absolute Maximum Ratings

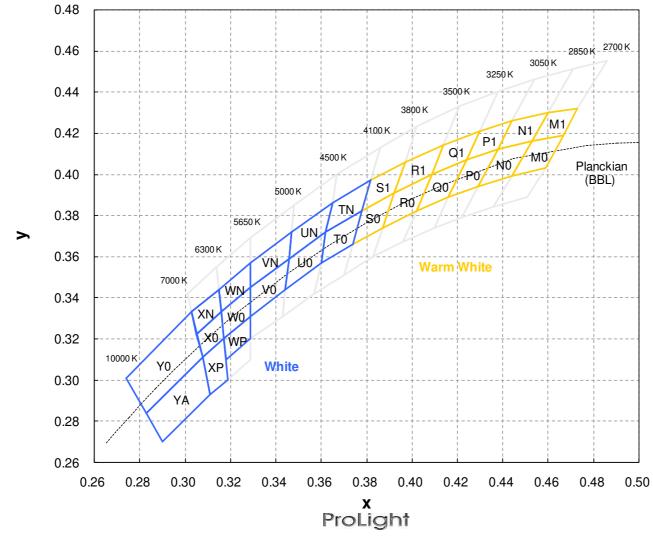
Parameter	White/Warm White/Green/Blue
DC Forward Current (mA)	350
Peak Pulsed Forward Current (mA)	500 (less than 1/10 duty cycle@1KHz)
ESD Sensitivity	> ±500V
(HBM per MIL-STD-883E Method 3015.7)	
LED Junction Temperature	120°C
Operating Board Temperature	-40°C - 105°C
at Maximum DC Forward Current	
Storage Temperature	-40°C - 120°C
Soldering Temperature	JEDEC 020c 260°C
Allowable Reflow Cycles	3
Reverse Voltage	Not designed to be driven in reverse bias

Parameter

DC Forward Current (mA)	350
Peak Pulsed Forward Current (mA)	500 (less than 1/10 duty cycle@1KHz)
ESD Sensitivity (HBM per MIL-STD-883E Method 3015.7)	±4000V (Class III)
LED Junction Temperature	120°C
Operating Board Temperature at Maximum DC Forward Current	-40°C - 105°C
Storage Temperature	-40°C - 120°C
Soldering Temperature	JEDEC 020c 260°C
Allowable Reflow Cycles	3
Reverse Voltage	Not designed to be driven in reverse bias

Red/Amber

Color	Bin Code	Minimum Photometric Flux (Im)	Maximum Photometric Flux (Im)	Available Color Bins
	V2	120	130	All
PM2E-1LWE	W1	130	140	All
PIVIZE-ILVVE	W2	140	155	All
	X1	155	170	Xx,Wx,Vx ^[1]
	V1	110	120	All
	V2	120	130	All
PM2E-1LVE-R7	W1	130	140	All
	W2	140	155	[1]
	U2	100	110	All
	V1	110	120	All
PM2E-1LVE-R8	V2	120	130	All
	W1	130	140	[1]
	S1	51.7	58.9	All
PM2E-1LRE	S2	58.9	67.2	All
	T1	67.2	76.6	[1]
	S1	51.7	58.9	All
	S2	58.9	67.2	All
PM2E-1LAE	T1	67.2	76.6	All
	T2	76.6	87.4	[1]
	U1	87.4	99.6	[1]
	U1	87.4	99.6	All
	U2	99.6	113.6	All
PM2E-1LGE	V1	113.6	129.5	All
	V2	129.5	147.7	All
	W1	147.7	168.4	【1】
	Р	23.5	30.6	A,1 ^[1]
PM2E-1LBE	Q	30.6	39.8	[1]


Photometric Luminous Flux Bin Structure

 \bullet ProLight maintains a tolerance of ± 7% on flux and power measurements.

• The flux bin of the product may be modified for improvement without notice.

• ^[1] The rest of color bins are not 100% ready for order currently. Please ask for quote and order possibility.

Color Bin

White and Warm White Binning Structure Graphical Representation

6

Color Bins

White Bin Structure

Bin Code	x	У	Typ. CCT (K)	Bin Code	x	У	Тур. ССТ (K)
	0.378	0.382			0.329	0.345	
T0	0.374	0.366	4300	WN	0.316	0.333	5970
10	0.360	0.357	+500	VVIN	0.315	0.344	5570
	0.362	0.372			0.329	0.357	
	0.382	0.397			0.329	0.331	
TN	0.378	0.382	4300	WP	0.329	0.320	5970
	0.362	0.372	+500	VVI	0.318	0.310	5570
	0.365	0.386			0.317	0.320	
	0.362	0.372			0.308	0.311	
U0	0.360	0.357	4750	X0	0.305	0.322	6650
00	0.344	0.344	4750	XU	0.316	0.333	0000
	0.346	0.359			0.317	0.320	
	0.365	0.386			0.305	0.322	
UN	0.362	0.362 0.372 4750 XN	XN	0.303	0.333	6650	
	0.346	0.359	4750		0.315	0.344	0000
	0.347	0.372			0.316	0.333	
	0.329	0.331			0.308	0.311	6650
V0	0.329	0.345	5320	XP	0.317	0.320	
VO	0.346	0.359	5520	AF	0.319	0.300	0050
	0.344	0.344			0.311	0.293	
	0.329	0.345			0.308	0.311	
VN	0.329	0.357	5320	Y0	0.283	0.284	8000
VIN	0.347	0.372	5520	10	0.274	0.301	8000
	0.346	0.359			0.303	0.333	
	0.329	0.345			0.308	0.311	
W0	0.329	0.331	5970	YA	0.311	0.293	8000
VVO	0.317	0.320	5970	I A	0.290	0.270	0000
	0.316	0.333			0.283	0.284	

 \bullet Tolerance on each color bin (x , y) is $\pm \ 0.005$

Color Bins

Warm White Bin Structure

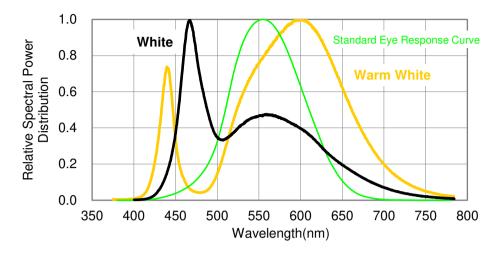
Bin Code	х	у	Typ. CCT (K)	Bin Code	х	у	Typ. CCT (K)
	0.453	0.416			0.409	0.400	
MO	0.444	0.399	2770	Q0	0.402	0.382	3370
IVIO	0.459	0.403	2110	QU	0.416	0.389	3370
	0.467	0.419			0.424	0.407	
	0.460	0.430			0.414	0.414	
M1	0.453	0.416	2770	Q1	0.409	0.400	3370
	0.467	0.419	2110	QT	0.424	0.407	3370
	0.473	0.432			0.430	0.421	
	0.438	0.412			0.392	0.391	
NO	0.429	0.394	2950	R0	0.387	0.374	3650
NO	0.444	0.399	2930	no	0.402	0.382	3030
	0.453	0.416			0.409	0.400	
	0.444	0.426			0.414	0.414	3650
N1	0.438	0.412	2950	R1	0.409	0.400	
	0.453	0.416	2950		0.392	0.391	
	0.460	0.430			0.397	0.406	
	0.424	0.407			0.392	0.391	3950
P0	0.416	0.389	3150	S0	0.387	0.374	
FU	0.429	0.394	3150	30	0.374	0.366	3950
	0.438	0.412			0.378	0.382	
	0.430	0.421			0.397	0.406	
P1	0.424	0.407	3150	S1	0.392	0.391	2050
ΓI	0.438	0.412	3100	31	0.378	0.382	3950
	0.444	0.426			0.382	0.397	

 \bullet Tolerance on each color bin (x , y) is $\pm \, 0.005$

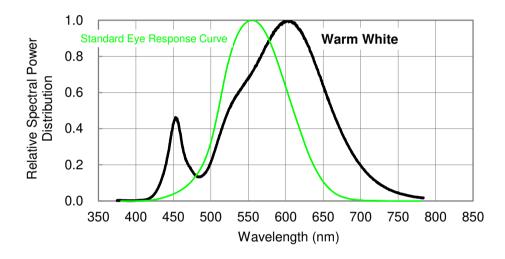
Color	Bin Code	Minimum Dominant Wavelength (nm)	Maximum Dominant Wavelength (nm)
Ded	2	613.5	620.5
Red	4	620.5	631.0
	2	587.0	589.5
A reals or r	4	589.5	592.0
Amber	6	592.0	594.5
	7	594.5	597.0
	А	515	520
Orean	1	520	525
Green	2	525	530
	3	530	535
	А	455	460
Dhue	1	460	465
Blue	2	465	470
	3	470	475

Dominant Wavelength Bin Structure

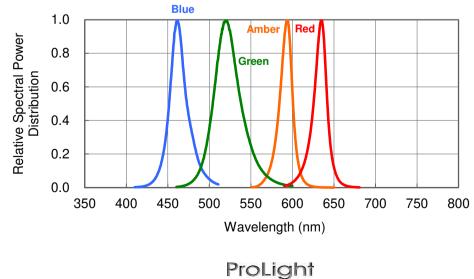
• ProLight maintains a tolerance of ± 1nm for dominant wavelength measurements.

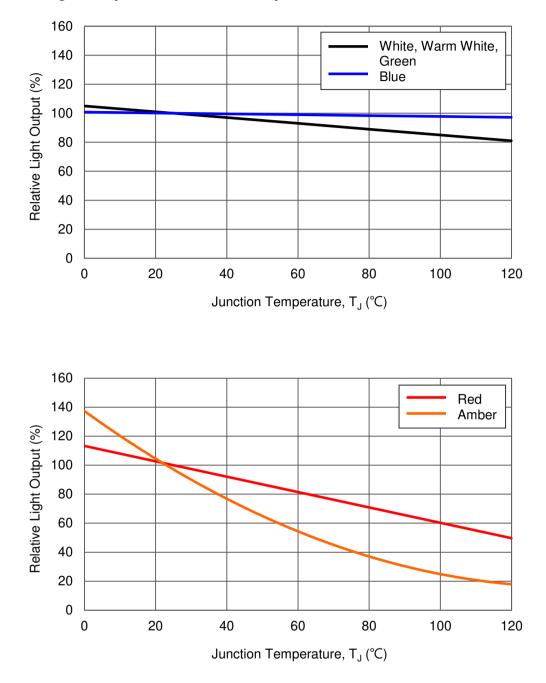

Color	Bin Code	Minimum Voltage (V)	Maximum Voltage (V)
	А	2.85	3.10
White	В	3.10	3.35
vvriite	D	3.35	3.60
	Е	3.60	3.85
	А	2.85	3.10
Warm White	В	3.10	3.35
warm white	D	3.35	3.60
	E	3.60	3.85
	А	1.75	2.00
	В	2.00	2.25
Red	D	2.25	2.50
	E	2.50	2.75
	F	2.75	3.00
	А	1.75	2.00
	В	2.00	2.25
Amber	D	2.25	2.50
	E	2.50	2.75
	F	2.75	3.00
	А	2.85	3.10
Orean	В	3.10	3.35
Green	D	3.35	3.60
	E	3.60	3.85
	А	2.85	3.10
Dive	В	3.10	3.35
Blue	D	3.35	3.60
	E	3.60	3.85

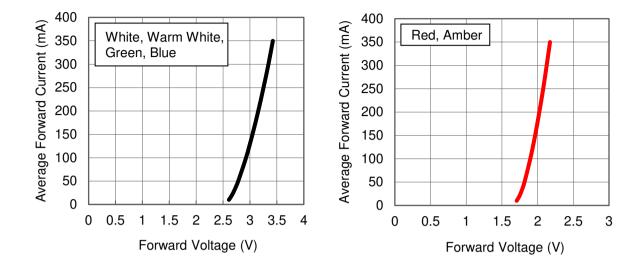
Forward Voltage Bin Structure


• ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

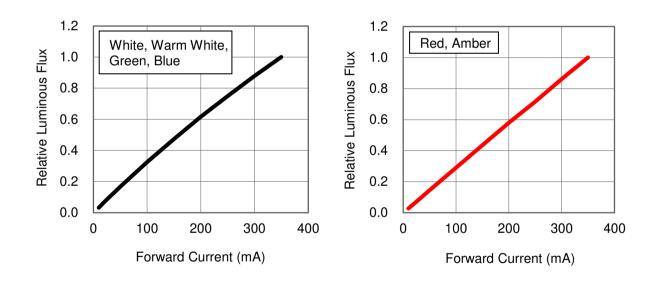
Color Spectrum, $T_J = 25^{\circ}C$


1. White
Varm White For R7

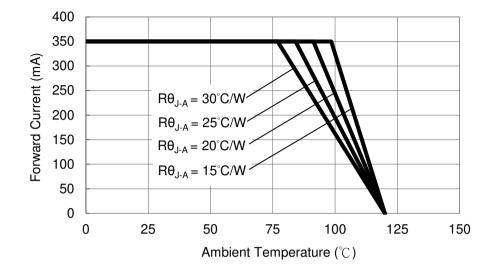

2. Warm White



Light Output Characteristics

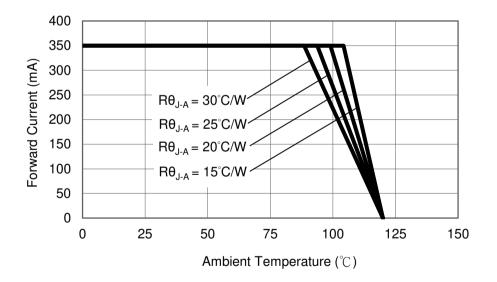

Relative Light Output vs. Junction Temperature at 350mA

Forward Current Characteristics, T_J = 25°C

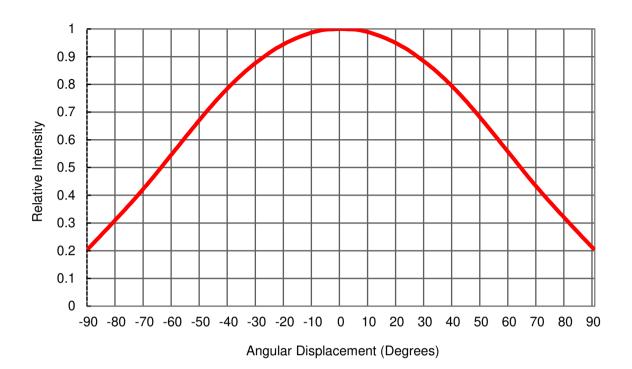


1. Forward Voltage vs. Forward Current

2. Forward Current vs. Normalized Relative Luminous Flux



Ambient Temperature vs. Maximum Forward Current


1. White, Warm White, Green, Blue (T_{JMAX} = 120°C)

2. Red, Amber ($T_{JMAX} = 120^{\circ}C$)

Typical Representative Spatial Radiation Pattern

Lambertian Radiation Pattern

Moisture Sensitivity Level - JEDEC Level 1

			Soak Requirements				
Level	Floor Life		Standard		Accelerated Environment		
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions	
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA	

• The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.

• Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

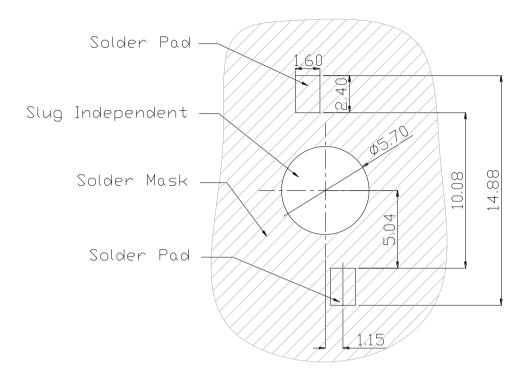
			Soak Requirements				
Level	Floor	r Life	Stan	dard	Accelerated Environment		
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions	
1	Unlimited	≤30°C /	168 +5/-0	85°C /	NA	NA	
I	Oninnited	85% RH	100 +3/-0	85% RH		NA	
2	1 year	≤30°C /	168 +5/-0	85°C /	NA	NA	
2	i yeai	60% RH	100 +5/-0	60% RH			
2a	4 weeks	≤30°C /	696 +5/-0	30°C /	120 +1/-0	60°C /	
24	4 WEEKS	60% RH	090 +5/-0	60% RH	120 +1/-0	60% RH	
3	168 hours	≤30°C /	192 +5/-0	30°C /	40 +1/-0	60°C /	
5	100 110013	60% RH	192 +3/-0	60% RH	40 +1/-0	60% RH	
4	72 hours	≤30°C /	96 +2/-0	30°C /	20 +0.5/-0	60°C /	
4	72 110015	60% RH	90 +2/-0	60% RH	20 +0.5/-0	60% RH	
5	48 hours	≤30°C /	72 +2/-0	30°C /	15 +0.5/-0	60°C /	
5	40 110015	60% RH	72 +2/-0	60% RH	15 +0.5/-0	60% RH	
5a	24 hours	≤30°C /	48 +2/-0	30°C /	10 +0.5/-0	60°C /	
Ja	24 110015	60% RH	40 +2/-0	60% RH	10 +0.5/-0	60% RH	
6	Time on Label	≤30°C /	Time on Label	30°C /	NA	NA	
0	(TOL)	60% RH	(TOL)	60% RH		NA.	

Qualification Reliability Testing

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life (RTOL)	25°C, I _F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Operating Life (WHTOL)	85°C/60%RH, I _F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Storage Life (WHTSL)	85°C/85%RH, non-operating	1000 hours	Note 2
High Temperature Storage Life (HTSL)	110°C, non-operating	1000 hours	Note 2
Low Temperature Storage Life (LTSL)	-40°C, non-operating	1000 hours	Note 2
Non-operating Temperature Cycle (TMCL)	-40°C to 120°C, 30 min. dwell, <5 min. transfer	200 cycles	Note 2
Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis		Note 3
Natural Drop	On concrete from 1.2 m, 3X		Note 3
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis		Note 3
Solderability	Steam age for 16 hrs., then solder dip at 260°C for 5 sec.		Solder coverage on lead

Notes:

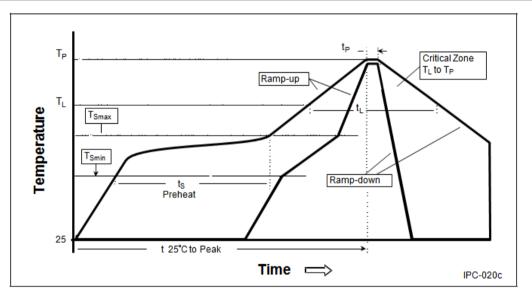
1. Depending on the maximum derating curve.


2. Criteria for judging failure

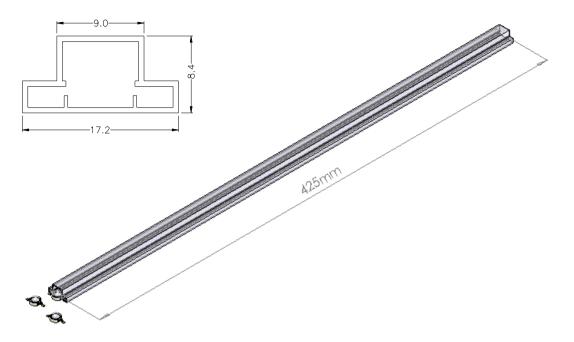
ltem	Test Condition	Criteria for Judgement	
nem	Test Condition	Min.	Max.
Forward Voltage (V _F)	I _F = max DC		Initial Level x 1.1
Luminous Flux or Radiometric Power (Φ_V)	I _F = max DC	Initial Level x 0.7	
Reverse Current (I _R)	$V_R = 5V$		50 µA

* The test is performed after the LED is cooled down to the room temperature.

3. A failure is an LED that is open or shorted.


Recommended Solder Pad Design

- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.


Reflow Soldering Condition

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate $(T_{Smax}$ to $T_P)$	3°C / second max.	3°C / second max.
Preheat		
– Temperature Min (T _{Smin})	100°C	150°C
– Temperature Max (T _{Smax})	150°C	200°C
– Time (t_{Smin} to t_{Smax})	60-120 seconds	60-180 seconds
Time maintained above:		
– Temperature (T _L)	183°C	217°C
– Time (t _L)	60-150 seconds	60-150 seconds
Peak/Classification Temperature (T _P)	240°C	260°C
Time Within 5°C of Actual Peak Temperature (t _P)	10-30 seconds	20-40 seconds
Ramp-Down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Tube Packaging

Notes:

- 1.50 pieces per tube.
- 2. Drawing not to scale.
- 3. All dimensions are in millimeters.
- 4. All dimendions without tolerances are for reference only.

**Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH.

Precaution for Use

• Electric Static Discharge (ESD) Protection The LEDs are STATIC SENSITIVE device. ESD protection or surge voltages shall be considered and taken care in the initial design stage, and whole production process. The following protection is recommended:

(1) A wrist band or an anti-electrostatic glove shall be used when handling the LEDs.(2) All devices, equipment and machinery must be properly grounded.

Storage

Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH. It is also recommended to return the LEDs to the MBB and to reseal the MBB.

- The slug is is not electrically neutral. Therefore, we recommend to isolate the heat sink.
- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. <u>http://www.prolightopto.com/</u>