

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at www.hestore.hu.

N-Channel Power MOSFET 60 V, 46 A, 16 m Ω

Features

- Low Gate Charge
- Fast Switching
- High Current Capability
- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

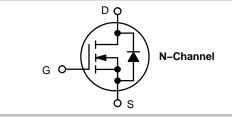
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	60	V
Gate-to-Source Voltage	je – Contir	nuous	V_{GS}	±20	V
Gate–to–Source Voltage – Non–Repetitive (t _p < 10 μs)			V_{GS}	±30	V
Continuous Drain		T _C = 25°C	I _D	46	Α
Current (R _{θJC})	Steady	T _C = 100°C		33	
Power Dissipation $(R_{\theta JC})$	State	T _C = 25°C	P _D	71	W
Pulsed Drain Current t _p = 10 μs			I _{DM}	203	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to 175	°C
Source Current (Body Diode)			I _S	46	Α
Single Pulse Drain-to-	(L =	E _{AS}	36	mJ	
Avalanche Energy	0.1 mH)	I _{AS}	27	Α	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

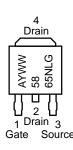
Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	2.1	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	49	

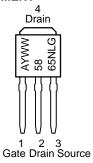

^{1.} Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
60 V	16 mΩ @ 10 V	46 A	
00 V	19 mΩ @ 4.5 V	40 A	




DPAK
CASE 369AA
(Surface Mount)
STYLE 2

IPAK CASE 369D (Straight Lead) STYLE 2

MARKING DIAGRAMS & PIN ASSIGNMENT

A = Assembly Location* Y = Year

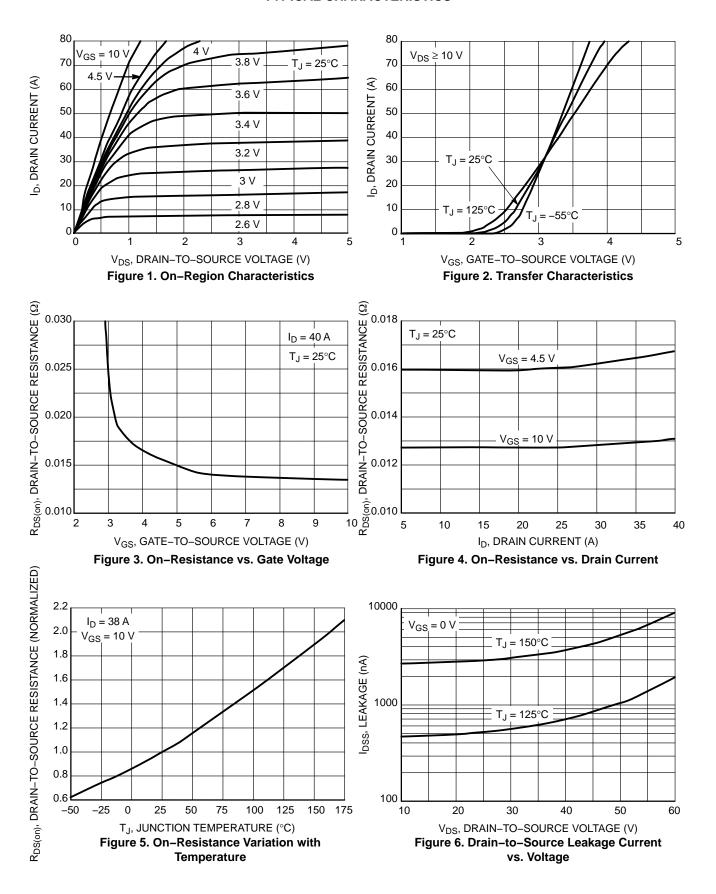
WW = Work Week 5865NL = Device Code G = Pb-Free Package

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)


OFF CHARACTERISTICS Drain—to—Source Breakdown Voltage Temperature Coefficient V(BR)DSS V _{GS} = 0 V, I _D = 250 μA 60 Drain—to—Source Breakdown Voltage Temperature Coefficient V(BR)DSS/TJ V _{GS} = 0 V, I _D = 250 μA 60 Zero Gate Voltage Drain Current IDSS V _{GS} = 0 V, V _{GS} = 0 V, V _{GS} = ±20 V T _J = 150°C 0 Gate—to—Source Leakage Current I _{GSS} V _{DS} = 0 V, V _{GS} = ±20 V 0 0 ON CHARACTERISTICS (Note 2) Gate Threshold Voltage V _{GS} (TH) V _{GS} = V _{DS} , I _D = 250 μA 1.0 Negative Threshold Temperature Coefficient V _{GS} (TH)/T _J V _{GS} = 10 V, I _D = 20 A 1.0 Drain—to—Source on Resistance R _{DS} (on) V _{GS} = 4.5 V, I _D = 20 A 1.0 Drain—to—Source on Resistance R _{DS} (on) V _{GS} = 4.5 V, I _D = 20 A 1.0 CHARGES, CAPACITANCES AND GATE RESISTANCES Input Capacitance C _{ISS} V _{DS} = 15 V, I _D = 20 A 1.0 CHARGES, CAPACITANCES AND GATE RESISTANCES Input Capacitance C _{ISS} V _{GS} = 0 V, I = 1.0 MHz, V _{DS} = 25 V 1.0 Input Capacitance C _{ISS} V _{GS} = 0 V, I _D = 48 V, I _D = 40 A	Тур	Max	Unit
Drain-to-Source Breakdown Voltage Temperature Coefficient		•	•
Temperature Coefficient Toest			V
Section	55		mV/°C
Gate—to—Source Leakage Current I _{GSS} V _{DS} = 0 V, V _{GS} = ±20 V		1.0	μΑ
ON CHARACTERISTICS (Note 2) Gate Threshold Voltage V _{GS} (TH) V _{GS} = V _{DS} , I _D = 250 μA 1.0 Negative Threshold Temperature Coefficient V _{GS} (TH)/T _J V _{GS} = 10 V, I _D = 20 A Drain-to-Source on Resistance R _{DS} (on) V _{GS} = 4.5 V, I _D = 20 A Forward Transconductance gFS V _{DS} = 15 V, I _D = 20 A Forward Transconductance G _{DS} (on) V _{GS} = 4.5 V, I _D = 20 A Forward Transconductance G _{DS} (on) V _{GS} = 15 V, I _D = 20 A Forward Transconductance G _{DS} (on) V _{DS} = 15 V, I _D = 20 A CHARGES, CAPACITANCES AND GATE RESISTANCES Input Capacitance C _{ISS} V _{GS} = 10 V, I _D = 20 A Output Capacitance C _{ISS} V _{DS} = 25 V Total Gate Charge Q _G (TOT) V _{GS} = 25 V Total Gate Charge Q _G (TOT) V _{GS} = 10 V, V _{DS} = 48 V, I _D = 40 A Gate-to-Source Charge Q _G (TOT) V _{GS} = 4.5 V, V _{DS} = 48 V, I _D = 40 A Gate-to-Drain Charge Q _G (TOT) V _{GS} = 4.5 V, V _{DS} = 48 V, I _D = 40 A Gate Resistance R _G SWITCHING CHARACTERISTICS (Note 3) Turn-On Delay Time t _I V _{GS} = 10 V, V _{DD} = 48 V, I _D = 40 A, R _G = 2.5 Ω Fall Time t _I V _{GS} = 10 V, V _{DD} = 48 V, I _D = 40 A, R _G = 2.5 Ω Forward Diode Voltage V _{SD} V _{GS} = 0 V, I _S = 40 A T _J = 25°C T _J = 125°C Reverse Recovery Time t _{RR} V _{SD} T _J = 125°C Reverse Recovery Time t _{RR} V _{SD} T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J = 125°C T _J =		±100	nA
Negative Threshold Temperature Coefficient			
Negative Threshold Temperature Coefficient		2.0	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.6	1	mV/°C
$ \begin{array}{ c c c c c } \hline Drain-to-Source on Resistance & R_{DS(on)} & V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A} \\ \hline Forward Transconductance & gFS & V_{DS} = 15 \text{ V}, I_D = 20 \text{ A} \\ \hline \hline Forward Transconductance & gFS & V_{DS} = 15 \text{ V}, I_D = 20 \text{ A} \\ \hline \hline CHARGES, CAPACITANCES AND GATE RESISTANCES \\ \hline Input Capacitance & C_{iss} & \\ \hline Output Capacitance & C_{oss} & \\ \hline Reverse Transfer Capacitance & C_{rss} & \\ \hline Total Gate Charge & Q_{G(TOT)} & \\ \hline Threshold Gate Charge & Q_{GS} & \\ \hline Gate-to-Source Charge & Q_{GS} & \\ \hline Gate-to-Drain Charge & Q_{GD} & \\ \hline Total Gate Charge & Q_{G(TOT)} & V_{GS} = 4.5 \text{ V}, V_{DS} = 48 \text{ V}, \\ \hline I_D = 40 \text{ A} & \\ \hline SWITCHING CHARACTERISTICS (Note 3) & \\ \hline Turn-On Delay Time & t_{d(on)} & \\ \hline Rise Time & t_{f} & \\ \hline Turn-Off Delay Time & t_{d(off)} & \\ \hline Fall Time & t_{f} & \\ \hline DRAIN-SOURCE DIODE CHARACTERISTICS & \\ \hline Reverse Recovery Time & t_{RR} & \\ \hline \hline Reverse Recovery Time & t_{RR} & \\ \hline \end{array}$	13	16	mΩ
$ \begin{array}{ c c c c } \hline \textbf{CHARGES, CAPACITANCES AND GATE RESISTANCES} \\ \hline \textbf{Input Capacitance} & \textbf{C}_{iss} \\ \hline \textbf{Output Capacitance} & \textbf{C}_{oss} \\ \hline \textbf{Reverse Transfer Capacitance} & \textbf{C}_{rss} \\ \hline \textbf{Total Gate Charge} & \textbf{Q}_{G(TOT)} \\ \hline \textbf{Threshold Gate Charge} & \textbf{Q}_{G(TH)} \\ \hline \textbf{Gate-to-Source Charge} & \textbf{Q}_{GS} \\ \hline \textbf{Gate-to-Drain Charge} & \textbf{Q}_{GD} \\ \hline \textbf{Total Gate Charge} & \textbf{Q}_{GD} \\ \hline \textbf{Total Gate Charge} & \textbf{Q}_{GTOT} \\ \hline \textbf{V}_{GS} = 4.5 \text{ V, V}_{DS} = 48 \text{ V,} \\ \textbf{I}_{D} = 40 \text{ A} \\ \hline \textbf{SWITCHING CHARACTERISTICS (Note 3)} \\ \hline \textbf{Turn-On Delay Time} & \textbf{t}_{d(on)} \\ \hline \textbf{Rise Time} & \textbf{t}_{r} \\ \hline \textbf{Turn-Off Delay Time} & \textbf{t}_{d(off)} \\ \hline \textbf{Fall Time} & \textbf{t}_{f} \\ \hline \textbf{DRAIN-SOURCE DIODE CHARACTERISTICS} \\ \hline \textbf{Reverse Recovery Time} & \textbf{t}_{RR} \\ \hline \hline \textbf{Reverse Recovery Time} & \textbf{t}_{RR} \\ \hline \hline \end{tabular} $	16	19	mΩ
$ \begin{array}{ c c c c } \hline \text{Input Capacitance} & C_{iss} \\ \hline \text{Output Capacitance} & C_{oss} \\ \hline \text{Reverse Transfer Capacitance} & C_{rss} \\ \hline \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{Threshold Gate Charge} & Q_{GS} \\ \hline \text{Gate-to-Source Charge} & Q_{GS} \\ \hline \hline \text{Gate-to-Drain Charge} & Q_{GD} \\ \hline \hline \text{Total Gate Charge} & Q_{GTH)} & V_{GS} = 10 \text{ V}, V_{DS} = 48 \text{ V}, \\ I_D = 40 \text{ A} \\ \hline \text{Gate Resistance} & R_G \\ \hline \hline \text{SWITCHING CHARACTERISTICS (Note 3)} \\ \hline \hline \text{Turn-On Delay Time} & t_{d(on)} \\ \hline \text{Rise Time} & t_{f} \\ \hline \text{Turn-Off Delay Time} & t_{d(off)} \\ \hline \text{Fall Time} & t_{f} \\ \hline \hline \text{DRAIN-SOURCE DIODE CHARACTERISTICS} \\ \hline \text{Reverse Recovery Time} & t_{RR} \\ \hline \hline \end{array} $	15		S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1400	T	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	137	1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	95		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		
	8		
Turn-On Delay Time $t_{d(on)}$ Rise Time t_{r} Turn-Off Delay Time $t_{d(off)}$ Fall Time t_{f} DRAIN-SOURCE DIODE CHARACTERISTICS Forward Diode Voltage V_{SD} Reverse Recovery Time t_{RR} VGS = 10 V, VDD = 48 V, ID = 40 A, RG = 2.5 Ω TURD-OFF DELAY TIME $V_{GS} = 0$ V, ID = 40 A, RG = 2.5 Ω	15		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.3	1	Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.4		ns
	12.4		1
DRAIN-SOURCE DIODE CHARACTERISTICS Forward Diode Voltage V_{SD} $V_{GS} = 0 \text{ V}, \\ I_S = 40 \text{ A}$ $T_J = 25^{\circ}\text{C}$ Reverse Recovery Time t_{RR}	26		
Forward Diode Voltage $ \begin{array}{c cccc} V_{SD} & V_{GS} = 0 \text{ V,} & T_{J} = 25^{\circ}\text{C} \\ \hline T_{J} = 125^{\circ}\text{C} & \\ \hline \end{array} $ Reverse Recovery Time $ \begin{array}{c cccc} t_{RR} & & \\ \hline \end{array} $	4.4		
$I_{S} = 40 \text{ A}$ $T_{J} = 125^{\circ}\text{C}$ Reverse Recovery Time t_{RR}			
Reverse Recovery Time t _{RR}	0.95 0.85	1.2	V
	20	+	ns
1. Danie inne	13	+	- 113
Charge Time ta $V_{GS} = 0 \text{ V, dls/dt} = 100 \text{ A/}\mu\text{s,}$ Discharge Time tb $I_S = 40 \text{ A}$	7	+	4
Reverse Recovery Charge Q _{RR}	13	+	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width $\leq 300~\mu$ s, Duty Cycle $\leq 2\%$.

3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

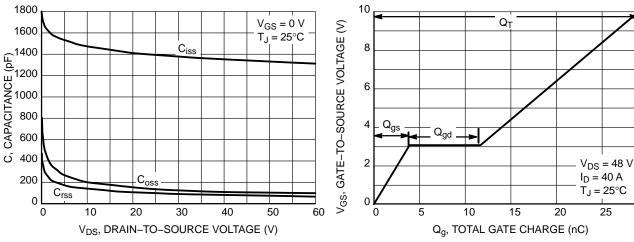


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source vs. Total Charge

30

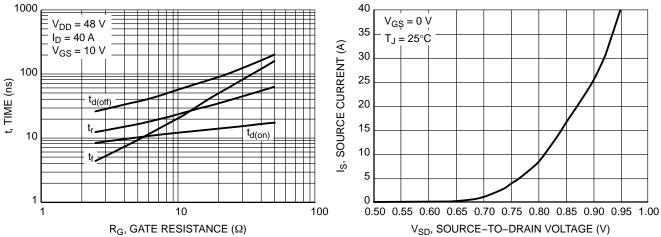


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

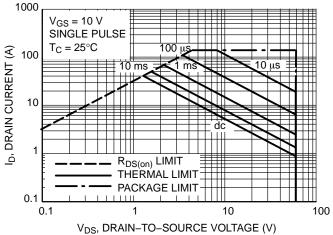


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

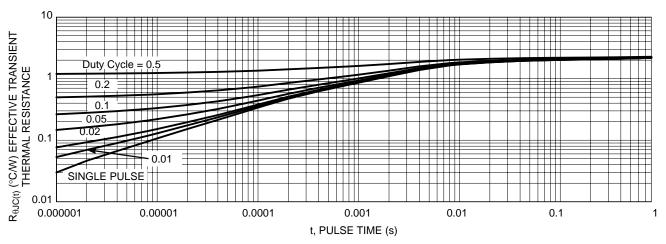
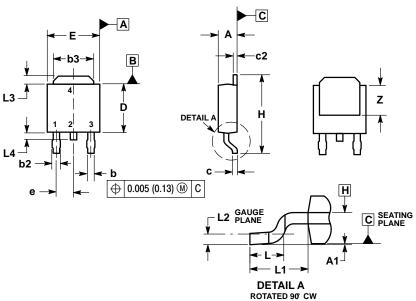
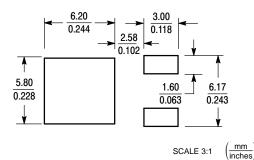


Figure 12. Thermal Response

ORDERING INFORMATION


Order Number	Package	Shipping [†]
NTD5865NL-1G	IPAK (Straight Lead) (Pb-Free)	75 Units / Rail
NTD5865NLT4G	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE)

CASE 369AA **ISSUE B**

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

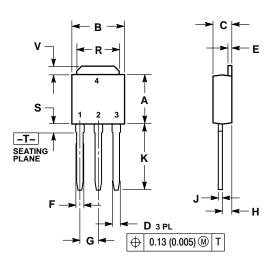
 2. CONTROLLING DIMENSION: INCHES.

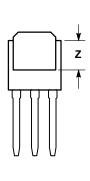
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.


	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108 REF		2.74	2.74 REF	
L2	0.020 BSC		0.51	1 BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
7	0.155		3.93		


STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE

- 4. DRAIN

PACKAGE DIMENSIONS

IPAK CASE 369D **ISSUE C**

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2:

PIN 1. GATE 2. DRAIN

- SOURCE
- DRAIN

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative