

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at www.hestore.hu.

INTEGRATED CIRCUITS

DATA SHEET

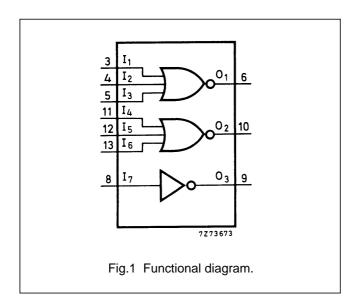
For a complete data sheet, please also download:

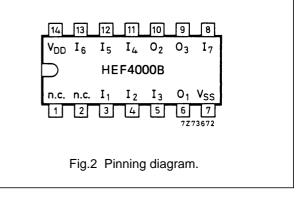
- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4000B gates Dual 3-input NOR gate and inverter

Product specification
File under Integrated Circuits, IC04

January 1995




Dual 3-input NOR gate and inverter

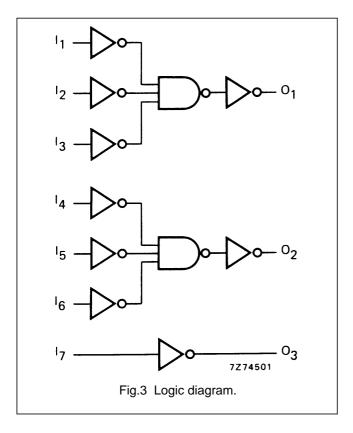
HEF4000B gates

DESCRIPTION

The HEF4000B provides the positive dual 3-input NOR function. A single stage inverting function with standard output performance is also accomplished. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

HEF4000BP(N): 14-lead DIL; plastic

(SOT27-1)


HEF4000BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4000BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

FAMILY DATA, IDD LIMITS category GATES

See Family Specifications

Philips Semiconductors Product specification

Dual 3-input NOR gate and inverter

HEF4000B gates

DC CHARACTERISTICS

For the single inverter stage (I₇/O₃):

see Family Specifications for input voltages HIGH and LOW (unbuffered stages only).

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays	5		70	140	ns	43 ns + (0,55 ns/pF) C _L
I_1 to $I_6 \rightarrow O_1, O_2$	10	t _{PHL} ; t _{PLH}	35	70	ns	24 ns + (0,23 ns/pF) C _L
	15		30	55	ns	22 ns + (0,16 ns/pF) C _L
	5		45	90	ns	18 ns + (0,55 ns/pF) C _L
$I_7 \rightarrow O_3$	10	t _{PHL} ; t _{PLH}	25	50	ns	14 ns + (0,23 ns/pF) C _L
(unbuffered output)	15		20	40	ns	12 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	7 700 $f_i + \sum (f_o C_L) \times V_{DD}^2$	$f_i = input freq. (MHz)$
package (P)	15	28 700 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f_0 = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L)$ = sum of outputs
			V _{DD} = supply voltage (V)

Dual 3-input NOR gate and inverter

HEF4000B gates

APPLICATION INFORMATION

The following information (Figs 4 to 7) is only for the single inverter stage (I_7/O_3).

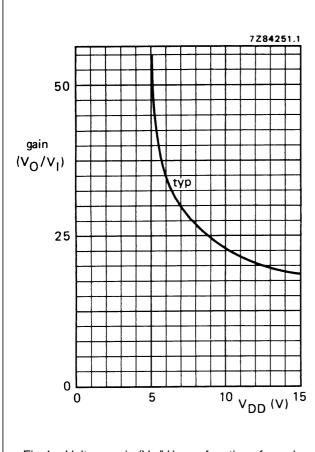
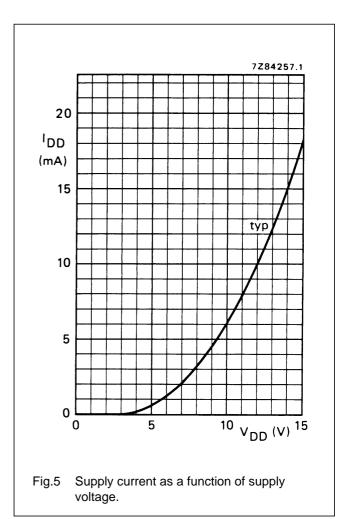
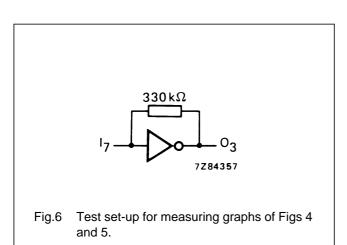




Fig.4 Voltage gain (V_O/V_I) as a function of supply voltage.

This is also an example of an analogue amplifier using the single inverter stage (I_7/O_3) of the HEF4000B.

Dual 3-input NOR gate and inverter

HEF4000B gates

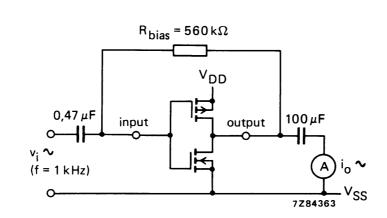
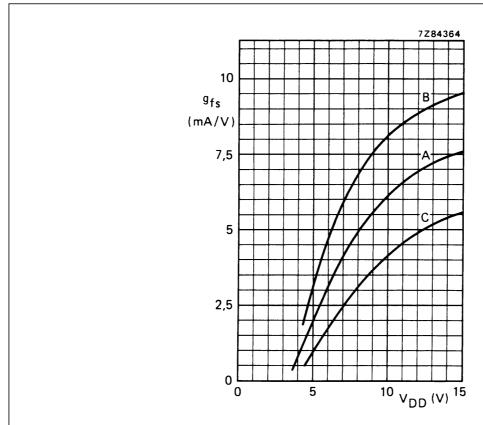



Fig.7 Test set-up for measuring forward transconductance $g_{fs} = di_0/dv_i$ at v_0 is constant (see also graph Fig.8).

A: average

B: average + 2 s,

C: average -2 s, in where 's' is the observed standard deviation.

Fig.8 Typical forward transconductance g_{fs} as a function of the supply voltage at T_{amb} = 25 °C.