HESTORE.HU

EN: This Datasheet is presented by the manufacturer.
Please visit our website for pricing and availability at www.hestore.hu.

Ultra Subminiature Basic Switch

Ultra Subminiature Basic
 Switch with plenty of terminal variations

- Incorporating a snapping mechanism made with two highly precise split springs that ensures long durability.
- Using insertion molded terminals that prevents flux penetration.
- In addition to self-clinching PCB, left-angled, right-angled terminals,
2 types of soldering terminals are available.

RoHS Compliant

Model Number Legend

D2F-1 234

1. Ratings
2. Terminals

None: 125 VAC 3A
None: PCB terminals (Straight)
$-T$: Self-clinching PCB terminals
-A : PCB terminals (Right-angled)
-A1: PCB terminals (Left-angled)
2. Maximum Operating Force (OF)
-D3: Solder terminals
-D : Compact solder terminals
None: $1.47 \mathrm{~N}\{150 \mathrm{gf}\}$
F : $0.74 \mathrm{~N}\{75 \mathrm{gf}\}$
Note. The given values are for pin plunger models only.
3. Actuator

None: Pin plunger
L : Hinge lever
L2 : Hinge Roller Lever
L3 : Simulated roller lever (R1.3)
L30: Simulated roller lever (R2.5)

List of Models

Actuator	Ratings Maximum Operating Force (OF) Terminals	3 A	1 A	0.1 A	
		General Purpose 1.47 N \{150 gf\}	Low Operating Force $0.74 \mathrm{~N}\{75 \mathrm{gf}\}$	General Purpose $1.47 \mathrm{~N}\{150 \mathrm{gf}\}$	Low Operating Force $0.74 \mathrm{~N}\{75 \mathrm{gf}\}$
Pin plunger	PCB terminals (Standard)	D2F	D2F-F	D2F-01	D2F-01F
	Self-clinching PCB terminals	D2F-T	D2F-F-T	D2F-01-T	D2F-01F-T
	PCB terminals (Right-angled)	D2F-A	D2F-F-A	D2F-01-A	D2F-01F-A
	PCB terminals (Left-angled)	D2F-A1	D2F-F-A1	D2F-01-A1	D2F-01F-A1
	Solder terminals	D2F-D3	D2F-F-D3	D2F-01-D3	D2F-01F-D3
	Compact solder terminals	D2F-D	D2F-F-D	D2F-01-D	D2F-01F-D
Hinge lever	PCB terminals (Standard)	D2F-L	D2F-FL	D2F-01L	D2F-01FL
	Self-clinching PCB terminals	D2F-L-T	D2F-FL-T	D2F-01L-T	D2F-01FL-T
	PCB terminals (Right-angled)	D2F-L-A	D2F-FL-A	D2F-01L-A	D2F-01FL-A
	PCB terminals (Left-angled)	D2F-L-A1	D2F-FL-A1	D2F-01L-A1	D2F-01FL-A1
	Solder terminals	D2F-L-D3	D2F-FL-D3	D2F-01L-D3	D2F-01FL-D3
	Compact solder terminals	D2F-L-D	D2F-FL-D	D2F-01L-D	D2F-01FL-D

Actuator	Maximum Operating Force (OF) Terminals	3 A	1 A	0.1 A	
		General Purpose $1.47 \mathrm{~N}\{150 \mathrm{gf}\}$	Low Operating Force $0.74 \mathrm{~N}\{75 \mathrm{gf}\}$	General Purpose $1.47 \mathrm{~N}\{150 \mathrm{gf}\}$	Low Operating Force $0.74 \mathrm{~N}\{75 \mathrm{gf}\}$
Hinge roller lever	PCB terminals (Standard)	D2F-L2	D2F-FL2	D2F-01L2	D2F-01FL2
	Self-clinching PCB terminals	D2F-L2-T	D2F-FL2-T	D2F-01L2-T	D2F-01FL2-T
	PCB terminals (Right-angled)	D2F-L2-A	D2F-FL2-A	D2F-01L2-A	D2F-01FL2-A
	PCB terminals (Left-angled)	D2F-L2-A1	D2F-FL2-A1	D2F-01L2-A1	D2F-01FL2-A1
	Solder terminals	D2F-L2-D3	D2F-FL2-D3	D2F-01L2-D3	D2F-01FL2-D3
	Compact solder terminals	D2F-L2-D	D2F-FL2-D	D2F-01L2-D	D2F-01FL2-D
Simulated roller lever (R1.3)	PCB terminals (Standard)	D2F-L3	D2F-FL3	D2F-01L3	D2F-01FL3
	Self-clinching PCB terminals	D2F-L3-T	D2F-FL3-T	D2F-01L3-T	D2F-01FL3-T
	PCB terminals (Right-angled)	D2F-L3-A	D2F-FL3-A	D2F-01L3-A	D2F-01FL3-A
	PCB terminals (Left-angled)	D2F-L3-A1	D2F-FL3-A1	D2F-01L3-A1	D2F-01FL3-A1
	Solder terminals	D2F-L3-D3	D2F-FL3-D3	D2F-01L3-D3	D2F-01FL3-D3
	Compact solder terminals	D2F-L3-D	D2F-FL3-D	D2F-01L3-D	D2F-01FL3-D
Simulated roller lever (R2.5)	PCB terminals (Standard)	D2F-L30	D2F-FL30	D2F-01L30	D2F-01FL30
	Self-clinching PCB terminals	D2F-L30-T	D2F-FL30-T	D2F-01L30-T	D2F-01FL30-T
	PCB terminals (Right-angled)	D2F-L30-A	D2F-FL30-A	D2F-01L30-A	D2F-01FL30-A
	PCB terminals (Left-angled)	D2F-L30-A1	D2F-FL30-A1	D2F-01L30-A1	D2F-01FL30-A1
	Solder terminals	D2F-L30-D3	D2F-FL30-D3	D2F-01L30-D3	D2F-01FL30-D3
	Compact solder terminals	D2F-L30-D	D2F-FL30-D	D2F-01L30-D	D2F-01FL30-D

Contact Form

-SPDT

Contact Specifications

Item \quad Model		D2F models	D2F-01 models
Contact	Specifications	Crossbar	
	Material	Silver alloy	Gold alloy
	Gap (standard value)	0.25 mm	
Minimum applicable load (see note) *		100 mA at 5 VDC	1 mA at 5 VDC

* Please refer to "Using Micro Loads" in "Precautions" for more information on the minimum applicable load.

Ratings

Model Maximum Operating Force (OF)	D2F models		D2F-01 models	
	1.47N (General-purpose)	0.74N (Low Operating Force)	1.47N (General-purpose)	0.74N (Low Operating Force)
	Resistive load			
125 VAC	3 A	1 A	-	
30 VDC	2 A	0.5 A	0.1 A	

Note. The above rating values apply under the following test conditions.
(1) Ambient temperature: $20 \pm 2^{\circ} \mathrm{C}$
(2) Ambient humidity: $65 \pm 5 \%$
(3) Operating frequency: 30 operations $/$ min

Approved Safety Standard

The items shown in the "List of Models" above are not standard approved models.
Consult your OMRON sales representative for specific models with standard approvals.
UL (UL1054) /CSA (CSA C22.2 No.55)

Rated voltage \quad Model	D2F (General-purpose)	D2F (Low operating force)	D2F-01
125 VAC	3 A	1 A	-
30 VDC	2 A	0.5 A	0.1 A

Characteristics

Item	Model	D2F-01 models	D2F-F models	D2F models	
Permissible operating speed	$\begin{array}{r}\text { Pin plunger models: } 1 \mathrm{~mm} \text { to } 500 \mathrm{~mm} / \mathrm{s}, \\ \text { Lever models: } 5 \mathrm{~mm} \text { to } 500 \mathrm{~mm} / \mathrm{s}\end{array}$				
$\begin{array}{l}\text { Permissible } \\ \text { operating } \\ \text { frequency }\end{array}$	Mechanical	Electrical	$\begin{array}{r}\text { Pin plunger models: } 200 \text { operations } / \mathrm{min}, \\ \text { Lever models: } 100 \text { operations } / \mathrm{min}\end{array}$		
30 operations $/ \mathrm{min}$					

Item Model		D2F-01 models	D2F-F models	D2F models
Dielectric strength	Between terminals of the same polarity	600 VAC $50 / 60 \mathrm{~Hz}$ for 1 min		
	Between current-carrying metal parts and ground	1,500 VAC $50 / 60 \mathrm{~Hz}$ for 1 min		
	Between each terminal and non-current-carrying metal parts	1,500 VAC $50 / 60 \mathrm{~Hz}$ for 1 min		
Vibration resistance * 1	Malfunction	10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude		
Shock resistance	Durability	1,000 m/s ${ }^{2}$ \{approx. 100G\} max.		
	Malfunction * 1	$300 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 30G\} max.		
Durability * 2	Mechanical	1,000,000 operations min. (60 operations/min)		
	Electrical	100,000 operations min. (30 operations/min)	$\begin{aligned} & 30,000 \text { on } \\ & \text { (30 ope } \end{aligned}$	ions min. ns/min)
Degree of protection		IEC IP40		
Ambient operating temperature		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (at ambient humidity 60% max.) (with no icing or condensation)		
Ambient operating humidity		85% max. (for $+5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$)		
Weight		Approx. 0.5 g (pin plunger models)		

Note. The data given above are initial values.
*1. The values are at Free Position and Total Travel Position values for pin plunger, and Total Travel Position value for lever. Close or open circuit of the contact is 1 ms max.
*2. For testing conditions, consult your OMRON sales representative.

Terminals/Appearances (Unit: mm)

-PCB terminals (Straight)

OPCB terminals (Right-angled)
-Solder terminals

Mounting Holes (Unit: mm)

-PCB terminals (Left-angled)

<PCB Mounting Dimensions (Reference)>

-Compact solder terminals

Ultra Subminiature Basic Switch

Dimensions (Unit: mm) /Operating Characteristics

The following illustrations and drawings are for D2F models with PCB terminals (straight). Self-clinching, solder, compact solder, and right-angled, left angled terminals are omitted from the following drawings. Refer to the previous page for these terminals.
When ordering, replace \square with the code for the terminal that you need. See the "List of Models" for available combinations of models.

OPin Plunger Models

D2F
D2F-01 \square
D2F-F \square
D2F-01F \square

Operating Characteristics	Model	$\begin{aligned} & \text { D2F- } \\ & \text { D2F-01 } \end{aligned}$	$\begin{aligned} & \text { D2F-F } \square \\ & \text { D2F-01F } \end{aligned}$
Operating Force	OF Max.	$1.47 \mathrm{~N}\{150 \mathrm{gf}\}$	$0.74 \mathrm{~N}\{75 \mathrm{gf}\}$
Releasing Force	RF Min.	$0.20 \mathrm{~N}\{20 \mathrm{gf}\}$	$0.05 \mathrm{~N}\{5 \mathrm{gf}\}$
Pretravel	PT Max.	0.5 mm	0.5 mm
Overtravel	OT Min.	0.25 mm	0.25 mm
Movement Differential	MD Max.	0.12 mm	0.12 mm
Operating Position	OP	$5.5 \pm 0.3 \mathrm{~mm}$	

-Hinge Lever Models

D2F-L \square
D2F-01L \square
D2F-FL \square
D2F-01FL \square

Operating Characteristics	Model	D2F-L \square	D2F-FL \square
D2F-01L \square	D2F-01FL \square		
Operating Force	OF Max.	$0.78 \mathrm{~N}\{80 \mathrm{gf}\}$	$0.25 \mathrm{~N}\{25 \mathrm{gf}\}$
Releasing Force	RF	Min.	$0.05 \mathrm{~N}\{5 \mathrm{gf}\}$
$0.02 \mathrm{~N}\{2 \mathrm{gf}\}$			
Overtravel	OT Min.	0.55 mm	0.55 mm
Movement Differential	MD Max.	0.5 mm	0.5 mm
Free Position	FP Max.	10 mm	
Operating Position	OP	$6.8 \pm 1.5 \mathrm{~mm}$	

OSimulated Roller Lever Models (R1.3)

D2F-L3
D2F-01L3 \square
D2F-FL3 \square
D2F-01FL3 \square

Operating	Model			
Characteristics		D2F-L3 \square D2F-01L3 \square	D2F-FL3 \square D2F-01FL3 \square	
Operating Force	OF Max.	$0.78 \mathrm{~N}\{80 \mathrm{gff}\}$	$0.39 \mathrm{~N}\{40 \mathrm{gf}\}$	
Releasing Force	RF	Min.	$0.05 \mathrm{~N}\{5 \mathrm{gf}\}$	$0.02 \mathrm{~N}\{2 \mathrm{gf}\}$
Overtravel	OT	Min.	0.5 mm	0.5 mm
Movement Differential	MD	Max.	0.45 mm	0.45 mm
Free Position	FP	Max.	13 mm	
Operating Position	OP	$8.5 \pm 1.2 \mathrm{~mm}$		

-Simulated Roller Lever Models (R2.5)

D2F-L30 \square

D2F-01L30 \square
D2F-FL30 \square
D2F-01FL30 \square

Note 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
Note 2. The operating characteristics are for operation in the A direction (\downarrow).

-Hinge Roller Lever Models

Operating Characteristics		Model	$\begin{array}{\|l} \text { D2F-L2 } \square \\ \text { D2F-01L2 } \end{array}$	$\begin{aligned} & \text { D2F-FL2 } \square \\ & \text { D2F-01FL2 } \end{aligned}$
Operating Force	OF	Max.	$0.78 \mathrm{~N}\{80 \mathrm{gf}\}$	$0.39 \mathrm{~N}\{40 \mathrm{gf}\}$
Releasing Force	RF	Min.	$0.05 \mathrm{~N}\{5 \mathrm{~g}\}$ \}	$0.02 \mathrm{~N}\{2 \mathrm{~g}\}\}$
Overtravel		Min.	0.55 mm	0.55 mm
Movement Differential	MD	Max.	0.5 mm	0.5 mm
Free Position	FP	Max.	$\begin{aligned} & \hline 16.5 \mathrm{~mm} \\ & 13 \pm 2 \mathrm{~mm} \end{aligned}$	
Operating Position	OP			

Note 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
Note 2. The operating characteristics are for operation in the A direction (\downarrow).

Precautions

太Please refer to "Basic Switches Common Precautions" for correct use.
Cautions

-Soldering

- Terminal connection

When soldering, make sure that the temperature of the soldering iron tip is not higher than $300^{\circ} \mathrm{C}$, and complete the soldering within 3 seconds. Do not apply any external force for 1 minute after soldering. Soldering at an excessively high temperature or soldering for more than 3 seconds may deteriorate the characteristics of the Switch.

- Connecting to PCB terminal Boards

When using automatic soldering baths, we recommend soldering at $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ within 5 seconds. Make sure that the liquid surface of the solder does not flow over the edge of the board.
When soldering terminals manually, perform soldering within 3 seconds at iron tip temperature not higher than $350^{\circ} \mathrm{C}$. Do not apply any external force for at least 1 minute after soldering.
When applying solder, keep the solder away from the case of the Switch and do not allow solder or flux to flow into the case.

Correct Use
OMounting

Use M2 mounting screws with plane washers or spring washers to securely mount the Switch. Tighten the screws to a torque of 0.08 to $0.1 \mathrm{~N} \cdot \mathrm{~m}\{0.8$ to $1 \mathrm{kgf} \cdot \mathrm{cm}\}$.

-Using Micro Loads

Using a model for ordinary loads to open or close the contact of a micro load circuit may result in faulty contact. Use models that operate in the following range. However, even when using micro load models within the following operating range, if inrush current occurs when the contact is opened or closed, it may increase the contact wear and so decrease durability. Therefore, insert a contact protection circuit where necessary. The minimum applicable load is the N -level reference value. This value indicates the malfunction reference level for the reliability level of $60 \%\left(\lambda_{60}\right)$.
(JIS C5003)
The equation, $\lambda_{60}=0.5 \times 10^{-6} /$ operation, indicates that the estimated malfunction rate is less than $\frac{1}{2,000,000}$ operations with a reliability level of 60%.

