

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at www.hestore.hu.

Features

- High Performance, Low Power AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
 - 135 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 16 MIPS Throughput at 16 MHz
 - On-Chip 2-cycle Multiplier
- Non-volatile Program and Data Memories
 - 32/64/128K Bytes of In-System Self-Programmable Flash
 - Endurance: 100,000 Write/Erase Cycles
 - Optional Boot Code Section with Independent Lock Bits
 - USB Bootloader programmed by default in the Factory
 - In-System Programming by On-chip Boot Program hardware activated after reset
 - True Read-While-Write Operation
 - All supplied parts are preprogramed with a default USB bootloader
 - 1K/2K/4K (32K/64K/128K Flash version) Bytes EEPROM
 - Endurance: 100,000 Write/Erase Cycles
 - 2.5K/4K/8K (32K/64K/128K Flash version) Bytes Internal SRAM
 - Up to 64K Bytes Optional External Memory Space
 - Programming Lock for Software Security
- JTAG (IEEE std. 1149.1 compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard
 - Extensive On-chip Debug Support
 - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- USB 2.0 Full-speed/Low-speed Device and On-The-Go Module
 - Complies fully with:
 - Universal Serial Bus Specification REV 2.0
 - On-The-Go Supplement to the USB 2.0 Specification Rev 1.0
 - Supports data transfer rates up to 12 Mbit/s and 1.5 Mbit/s
- USB Full-speed/Low Speed Device Module with Interrupt on Transfer Completion
 - Endpoint 0 for Control Transfers : up to 64-bytes
 - 6 Programmable Endpoints with IN or Out Directions and with Bulk, Interrupt or Isochronous Transfers
 - Configurable Endpoints size up to 256 bytes in double bank mode
 - Fully independant 832 bytes USB DPRAM for endpoint memory allocation
 - Suspend/Resume Interrupts
 - Power-on Reset and USB Bus Reset
 - 48 MHz PLL for Full-speed Bus Operation
 - USB Bus Disconnection on Microcontroller Request
- USB OTG Reduced Host:
 - Supports Host Negotiation Protocol (HNP) and Session Request Protocol (SRP) for OTG dual-role devices
 - Provide Status and control signals for software implementation of HNP and SRP
 - Provides programmable times required for HNP and SRP
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
 - Two16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode

8-bit **AVR**®
Microcontroller with
64/128K Bytes
of ISP Flash
and USB
Controller

ATmega32U6* AT90USB646 AT90USB647 AT90USB1286 AT90USB1287

Summary

*Preliminary

- Real Time Counter with Separate Oscillator
- Four 8-bit PWM Channels
- Six PWM Channels with Programmable Resolution from 2 to 16 Bits
- Output Compare Modulator
- 8-channels, 10-bit ADC
- Programmable Serial USART
- Master/Slave SPI Serial Interface
- Byte Oriented 2-wire Serial Interface
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated Oscillator
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
- I/O and Packages
 - 48 Programmable I/O Lines
 - 64-lead TQFP and 64-lead QFN
- Operating Voltages
 - 2.7 5.5V
- Operating temperature
 - Industrial (-40°C to +85°C)
- Maximum Frequency
 - 8 MHz at 2.7V Industrial range
 - 16 MHz at 4.5V Industrial range

1. Pin Configurations

Figure 1-1. Pinout ATmega32U6/AT90USB64/128-TQFP

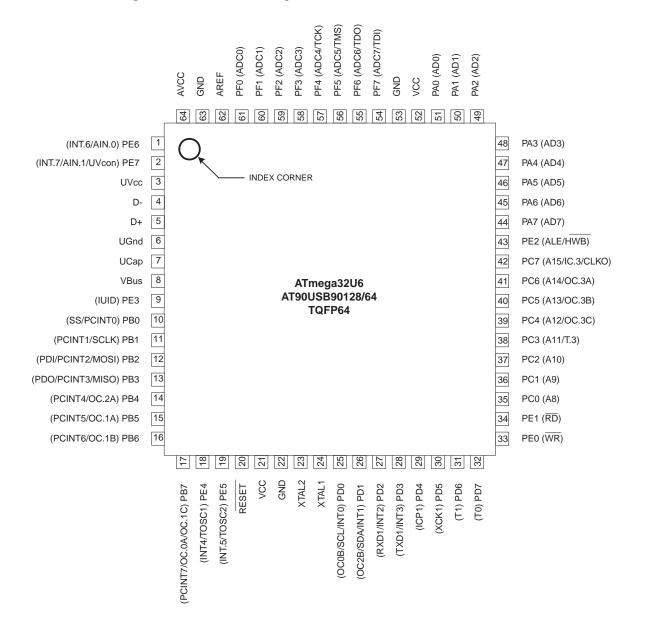
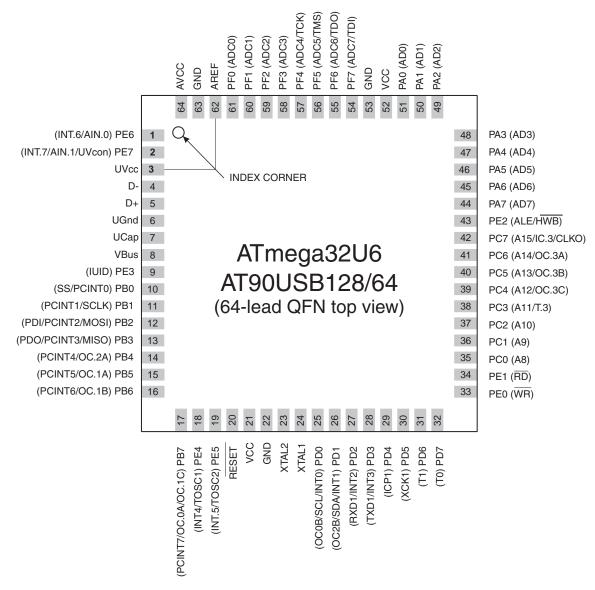
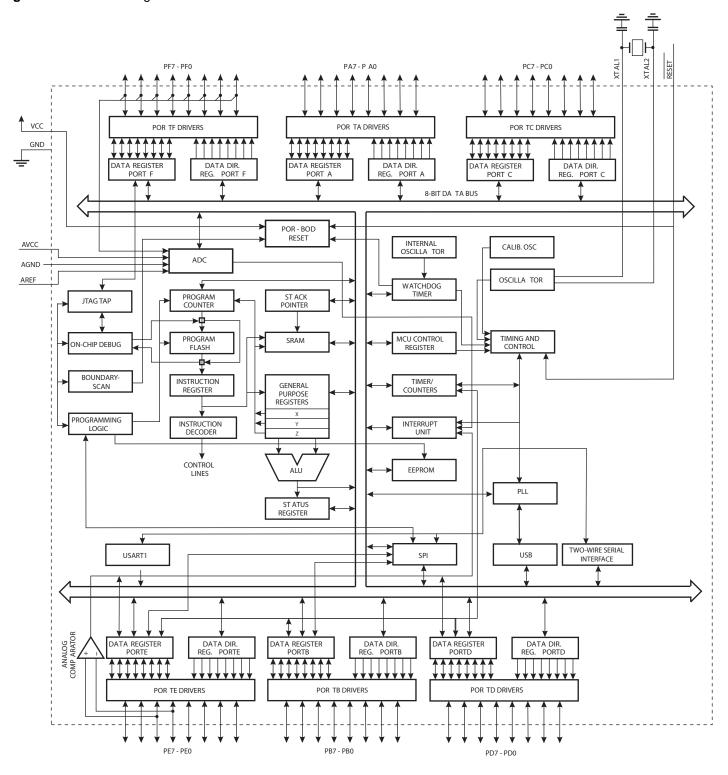



Figure 1-2. Pinout ATmega32U6/AT90USB64/128-QFN

Note: The large center pad underneath the MLF packages is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board.

1.1 Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.


2. Overview

The ATmega32U6/AT90USB64/128 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the

ATmega32U6/AT90USB64/128 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega32U6/AT90USB64/128 provides the following features: 32/64/128K bytes of In-System Programmable Flash with Read-While-Write capabilities, 1K/2K/4K bytes EEPROM, 2.5K/4K/8K bytes SRAM, 48 general purpose I/O lines, 32 general purpose working registers, Real Time Counter (RTC), four flexible Timer/Counters with compare modes and PWM, one USART, a byte oriented 2-wire Serial Interface, a 8-channels, 10-bit ADC with optional differential input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and programming and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Powersave mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Atmel's high-density nonvolatile memory technology. The Onchip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega32U6/AT90USB64/128 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega32U6/AT90USB64/128 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, incircuit emulators, and evaluation kits.

2.2 Pin Descriptions

2.2.1 VCC

Digital supply voltage.

2.2.2 GND

Ground.

2.2.3 AVCC

Analog supply voltage.

2.2.4 Port A (PA7..PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega32U6/AT90USB64/128 as listed on page 79.

2.2.5 Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the ATmega32U6/AT90USB64/128 as listed on page 80.

2.2.6 Port C (PC7..PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the ATmega32U6/AT90USB64/128 as listed on page 83.

2.2.7 Port D (PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega32U6/AT90USB64/128 as listed on page 84.

2.2.8 Port E (PE7..PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega32U6/AT90USB64/128 as listed on page 87.

2.2.9 Port F (PF7..PF0)

Port F serves as analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface.

2.2.10 D-

USB Full speed / Low Speed Negative Data Upstream Port. Should be connected to the USB D-connector pin with a serial 22 Ohms resistor.

2.2.11 D+

USB Full speed / Low Speed Positive Data Upstream Port. Should be connected to the USB D+ connector pin with a serial 22 Ohms resistor.

2.2.12 UGND

USB Pads Ground.

2.2.13 UVCC

USB Pads Internal Regulator Input supply voltage.

2.2.14 UCAP

USB Pads Internal Regulator Output supply voltage. Should be connected to an external capacitor (1µF).

2.2.15 VBUS

USB VBUS monitor and OTG negociations.

2.2.16 **RESET**

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 8-1 on page 58. Shorter pulses are not guaranteed to generate a reset.

2.2.17 XTAL1

8

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

ATmega32U6/AT90USB64/128

2.2.18 XTAL2

Output from the inverting Oscillator amplifier.

2.2.19 AVCC

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter.

2.2.20 AREF

This is the analog reference pin for the A/D Converter.

3. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

These code examples assume that the part specific header file is included before compilation. For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

4. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-				-				9
(0xFE)	Reserved	-	-	-	-	-	-	-	-	
(0xFD)	Reserved	-	_	-	-	-	_	-	-	
(0xFC)	Reserved	-	-	-	-	-	-	-	-	
(0xFB)	Reserved	-	-	_	-	_	-	-	-	
(0xFA)	Reserved	-	_	_	_	_	_	-	-	
(0xF9)	OTGTCON		P/	AGE				VA	LUE	
(0xF8)	UPINT				PIN	NT7:0				
(0xF7)	UPBCHX	-	-	-	-	-		PBYCT10:8		
(0xF6)	UPBCLX					CT7:0	l			
(0xF5)	UPERRX	-	COUN	ITER1:0	CRC16	TIMEOUT	PID	DATAPID	DATATGL	
(0xF4)	UEINT			-		EPINT6:0	I			
(0xF3)	UEBCHX	-	-	-	-	-		BYCT10:8		
(0xF2)	UEBCLX				BY	CT7:0				
(0xF1)	UEDATX					AT7:0				
(0xF0)	UEIENX	FLERRE	NAKINE	-	NAKOUTE	RXSTPE	RXOUTE	STALLEDE	TXINE	
(0xEF)	UESTA1X	-	-	-	-	-	CTRLDIR	CURI	RBK1:0	
(0xEE)	UESTA0X	CFGOK	OVERFI	UNDERFI	-	DTS	Q1:0		SYBK1:0	
(0xED)	UECFG1X			EPSIZE2:0			K1:0	ALLOC		
(0xEC)	UECFG0X	EPTY	PE1:0				-	-	EPDIR	
(0xEB)	UECONX			STALLRQ	STALLRQC	RSTDT			EPEN	
(0xEA)	UERST					EPRST6:0			•	
(0xE9)	UENUM							EPNUM2:0		
(0xE8)	UEINTX	FIFOCON	NAKINI	RWAL	NAKOUTI	RXSTPI	RXOUTI	STALLEDI	TXINI	
(0xE7)	Reserved			-	-	-	-			
(0xE6)	UDMFN				FNCERR					
(0xE5)	UDFNUMH							FNUM10:8		
(0xE4)	UDFNUML				FNI	JM7:0	l .			
(0xE3)	UDADDR	ADDEN				UADD6:0				
(0xE2)	UDIEN		UPRSME	EORSME	WAKEUPE	EORSTE	SOFE		SUSPE	
(0xE1)	UDINT		UPRSMI	EORSMI	WAKEUPI	EORSTI	SOFI		SUSPI	
(0xE0)	UDCON						LSM	RMWKUP	DETACH	
(0xDF)	OTGINT			STOI	HNPERRI	ROLEEXI	BCERRI	VBERRI	SRPI	
(0xDE)	OTGIEN			STOE	HNPERRE	ROLEEXE	BCERRE	VBERRE	SRPE	
(0xDD)	OTGCON			HNPREQ	SRPREQ	SRPSEL	VBUSHWC	VBUSREQ	VBUSRQC	
(0xDC)	Reserved									
(0xDB)	Reserved									
(0xDA)	USBINT							IDTI	VBUSTI	
(0xD9)	USBSTA					SPEED		ID	VBUS	
(0xD8)	USBCON	USBE	HOST	FRZCLK	OTGPADE			IDTE	VBUSTE	
(0xD7)	UHWCON	UIMOD	UIDE		UVCONE				UVREGE	
(0xD6)	Reserved									
(0xD5)	Reserved									
(0xD4)	Reserved									
(0xD3)	Reserved									
(0xD2)	Reserved	-	-	-	-	-	-	-	-	
(0xD1)	Reserved	-	-	-	-	-	-	-	-	
(0xD0)	Reserved	-	-	-	-	-	-	-	-	
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	UDR1				USART1 I/C	Data Register				
(0xCD)	UBRR1H	-	-	-	-		SART1 Baud Rat	e Register High E	Byte	
(0xCC)	UBRR1L			l	JSART1 Baud Ra					
(0xCB)	Reserved	-	-	-	-	-	-	-	-	
(0xCA)	UCSR1C	UMSEL11	UMSEL10	UPM11	UPM10	USBS1	UCSZ11	UCSZ10	UCPOL1	
(0xC9)	UCSR1B	RXCIE1	TXCIE1	UDRIE1	RXEN1	TXEN1	UCSZ12	RXB81	TXB81	
(0xC8)	UCSR1A	RXC1	TXC1	UDRE1	FE1	DOR1	PE1	U2X1	MPCM1	
(0xC7)	Reserved	-	-	-	-	-	-	-	-	
(0xC6)	Reserved	-	-	-	-	-	-	-	-	
(0xC5)	Reserved	-	-	-	-	-	-	-	-	
(0xC4)	Reserved	-	-	-	-	-	-	-	-	
(0xC3)	Reserved	-	-	-	-	-	-	-	-	
(0xC2)	Reserved	-	-	-	-	-	-	-	-	
(0xC1)	Reserved	-	-	-	-	-	-	-	-	
(/		-	-	-	-	-	-	-	-	
(0xC0)	Reserved	-	-	-	-	-		-		

ATmega32U6/AT90USB64/128

		l		1	1	1				_
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBE)	Reserved	-	-	-	-	-		-	-	
(0xBD)	TWAMR	TWAM6	TWAM5	TWAM4	TWAM3	TWAM2	TWAM1	TWAM0	-	
(0xBC)	TWCR TWDR	TWINT	TWEA	TWSTA	TWSTO	TWWC erface Data Regis	TWEN	-	TWIE	
(0xBB) (0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	
(0xB4)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	
(0xB8)	TWBR	14407	1 1 1 1 1 1 1			ace Bit Rate Reg	ister	1001	1771 00	
(0xB7)	Reserved	-	-	-	-	-	-	-	-	
(0xB6)	ASSR	-	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB	
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	OCR2B		•	Tim	ner/Counter2 Out	out Compare Reg	jister B	•	•	
(0xB3)	OCR2A			Tim	ner/Counter2 Out	out Compare Reg	jister A			
(0xB2)	TCNT2				Timer/Co	unter2 (8 Bit)				
(0xB1)	TCCR2B	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20	
(0xB0)	TCCR2A	COM2A1	COM2A0	COM2B1	COM2B0	-	-	WGM21	WGM20	
(0xAF)	UPDATX		T	1		AT7:0		T	ı	
(0xAE)	UPIENX	FLERRE	NAKEDE	-	PERRE	TXSTPE	TXOUTE	RXSTALLE	RXINE	
(0xAD)	UPCFG2X	050011	0)/555	LINDEDE	INTE	RQ7:0	FO4:0		VDK4.C	
(0xAC)	UPSTAX	CFGOK	OVERFI	UNDERFI	<u> </u>		EQ1:0		YBK1:0	
(0xAB)	UPCFG1X UPCFG0X	DTV	PE1:0	PSIZE2:0	EN1:0	PBI	K1:0	ALLOC NUM3:0		
(0xAA) (0xA9)	UPCONX	PIY	PFREEZE	INMODE	LINI.U	RSTDT	PEPI	NOIVIO.U	PEN	
(0xA9)	UPRST		TTINELEL	IIVIODE		PRST6:0			ILIN	
(0xA8)	UPNUM					. 1.010.0		PNUM2:0		
(0xA6)	UPINTX	FIFOCON	NAKEDI	RWAL	PERRI	TXSTPI	TXOUTI	RXSTALLI	RXINI	
(0xA5)	UPINRQX		1			RQ7:0				
(0xA4)	UHFLEN					EN7:0				
(0xA3)	UHFNUMH							FNUM10:8		
(0xA2)	UHFNUML			•	FN	JM7:0				
(0xA1)	UHADDR					HADD6:0				
(0xA0)	UHIEN		HWUPE	HSOFE	RXRSME	RSMEDE	RSTE	DDISCE	DCONNE	
(0x9F)	UHINT		HWUPI	HSOFI	RXRSMI	RSMEDI	RSTI	DDISCI	DCONNI	
(0x9E)	UHCON						RESUME	RESET	SOFEN	
(0x9D)	OCR3CH					ompare Register				
(0x9C)	OCR3CL					ompare Register	•			
(0x9B)	OCR3BH					ompare Register				
(0x9A) (0x99)	OCR3BL OCR3AH					compare Register ompare Register	•			
(0x98)	OCR3AL				-	compare Register				
(0x97)	ICR3H				-	Capture Register				
(0x96)	ICR3L					Capture Register				
(0x95)	TCNT3H					unter Register Hig	•			
(0x94)	TCNT3L					unter Register Lo				
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	TCCR3C	FOC3A	FOC3B	FOC3C	-	-	-	-	-	
(0x91)	TCCR3B	ICNC3	ICES3	-	WGM33	WGM32	CS32	CS31	CS30	
(0x90)	TCCR3A	COM3A1	COM3A0	COM3B1	COM3B0	COM3C1	COM3C0	WGM31	WGM30	
(0x8F)	Reserved	-	-	-	-	-	-	-	-	
(0x8E)	Reserved	-	-	- -	-	-	-	-	-	
(0x8D)	OCR1CH					ompare Register				
(0x8C)	OCR1CL					ompare Register				
(0x8B)	OCR1BH				-	ompare Register				
(0x8A)	OCR1BL					compare Register				
(0x89) (0x88)	OCR1AH OCR1AL					ompare Register				
(0x87)	ICR1H	Timer/Counter1 - Output Compare Register A Low Byte Timer/Counter1 - Input Capture Register High Byte								
(0x86)	ICR1L	Timer/Counter1 - Input Capture Register Figh Byte Timer/Counter1 - Input Capture Register Low Byte								
(0x85)	TCNT1H					unter Register Hig				
(0x84)	TCNT1L					unter Register Lo				
(0x83)	Reserved	-	-	-	-	-	-	-	-	
(0x82)	TCCR1C	FOC1A	FOC1B	FOC1C	-	-	-	-	-	
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	COM1C1	COM1C0	WGM11	WGM10	
(0x7F)	DIDR1	-	-	-	-	-	-	AIN1D	AIN0D	
(0x7E)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	
(0x7D)	-	-	-	-	-	-	-	-	-	

Address	Nome	D:4.7	Dit C	D:4 F	D:4 4	D:4.2	D:4 0	D:4.4	D:4 0	Down
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7C)	ADMUX	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	
(0x7B)	ADCSRB	ADHSM	ACME		-	-	ADTS2	ADTS1	ADTS0	
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	
(0x79) (0x78)	ADCH ADCL					egister High byte egister Low byte				
(0x78) (0x77)	Reserved	-	-	-	ADC Data Re	gister Low byte	_	_	_	
(0x77) (0x76)	Reserved	-	-	-	-	_	-	-	-	
(0x75)	XMCRB	XMBK	-	-	-	-	XMM2	XMM1	XMM0	
(0x74)	XMCRA	SRE	SRL2	SRL1	SRL0	SRW11	SRW10	SRW01	SRW00	
(0x73)	Reserved	-	-	-	-	-	-	-	-	
(0x72)	Reserved	-	-	-	-	-	-	-	-	
(0x71)	TIMSK3	-	-	ICIE3	-	OCIE3C	OCIE3B	OCIE3A	TOIE3	
(0x70)	TIMSK2	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2	
(0x6F)	TIMSK1	-	-	ICIE1	-	OCIE1C	OCIE1B	OCIE1A	TOIE1	
(0x6E)	TIMSK0	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0	
(0x6D)	Reserved	-	-	-	-	-	-	-	-	
(0x6C)	Reserved	-	-	-	-	-	-	-	-	
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	
(0x6A)	EICRB	ISC71	ISC70	ISC61	ISC60	ISC51	ISC50	ISC41	ISC40	
(0x69)	EICRA	ISC31	ISC30	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	
(0x68)	PCICR	-	-	-	-	-	-	-	PCIE0	
(0x67)	Reserved	-	-	-	-	-	-	-	-	
(0x66)	OSCCAL		1		Oscillator Cal	ibration Register	1	1		
(0x65)	PRR1	PRUSB	-	-	-	PRTIM3	-	-	PRUSART1	
(0x64)	PRR0	PRTWI	PRTIM2	PRTIM0	-	PRTIM1	PRSPI	-	PRADC	
(0x63)	Reserved	-	-	-	-	-	-	-	-	
(0x62)	Reserved		-	-	-		-		-	
(0x61)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	
0x3F (0x5F)	SREG SPH	I SP15	T SP14	H SP13	S SP12	V SP11	N SP10	Z SP9	C SP8	
0x3E (0x5E) 0x3D (0x5D)	SPL	SP15	SP14 SP6	SP13	SP12 SP4	SP11	SP10 SP2	SP9	SP0	
0x3C (0x5C)	Reserved	- SF1	-	-	-	-	- 3F2	3F1	- -	
0x3B (0x5B)	RAMPZ	-	-	-	-	-	-	RAMPZ1	RAMPZ0	
0x3A (0x5A)	Reserved	-	-	-	-	-	-	-	-	
0x39 (0x59)	Reserved	-	-	-	-	_	-	-	-	
0x38 (0x58)	Reserved	_	-	-	-	_	-	-	-	
0x37 (0x57)	SPMCSR	SPMIE	RWWSB	SIGRD	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	
0x36 (0x56)	Reserved	-	-	-	-	-	-	-	-	
0x35 (0x55)	MCUCR	JTD	-	-	PUD	-	-	IVSEL	IVCE	
0x34 (0x54)	MCUSR	-	-	-	JTRF	WDRF	BORF	EXTRF	PORF	
0x33 (0x53)	SMCR	-	-	-	-	SM2	SM1	SM0	SE	
0x32 (0x52)	Reserved	-	-	-	-	-	-	-	-	
0x31 (0x51)	OCDR/	OCDR7	OCDR6	OCDR5	OCDR4	OCDR3	OCDR2	OCDR1	OCDR0	
0.01 (0.01)	MONDR				Monitor E	ata Register		_		
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	
0x2F (0x4F)	Reserved	-	-	-	-	-	-	-	-	
0x2E (0x4E)	SPDR		1		SPI Da	ta Register	•			
0x2D (0x4D)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X	
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	СРНА	SPR1	SPR0	
0x2B (0x4B)	GPIOR2					se I/O Register 2				
0x2A (0x4A)	GPIOR1					se I/O Register 1		D	F1 0011	
0x29 (0x49)	PLLCSR	-	-		PLLP2	PLLP1	PLLP0	PLLE	PLOCK	
0x28 (0x48)	OCR0B				ner/Counter0 Out					
0x27 (0x47) 0x26 (0x46)	OCR0A TCNT0									
0x26 (0x46) 0x25 (0x45)	TCCR0B	FOC0A	EOCOB		Timer/Co	· · ·	Cena	C201	CSOO	
0x25 (0x45) 0x24 (0x44)	TCCR0B TCCR0A	COM0A1	FOC0B COM0A0	COM0B1	COM0B0	WGM02	CS02 -	CS01 WGM01	CS00 WGM00	
0x24 (0x44) 0x23 (0x43)	GTCCR	TSM	- COMUAU	COMOB1	COMOBO -	-		PSRASY	PSRSYNC	
0x23 (0x43) 0x22 (0x42)	EEARH	10101	-	-	-		EEDROM Addros	s Register High B	-	
0x22 (0x42) 0x21 (0x41)	EEARL	-			EEPROM Addres			o regioter riigh b	,,	
0x21 (0x41) 0x20 (0x40)	EEDR					Data Register	,			
0x1F (0x3F)	EECR	-	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	
0x1E (0x3E)	GPIOR0					se I/O Register 0		<u> </u>	<u> </u>	
0x1D (0x3D)	EIMSK	INT7	INT6	INT5	INT4	INT3	INT2	INT1	INT0	
0x1C (0x3C)	EIFR	INTF7	INTF6	INTF5	INTF4	INTF3	INTF2	INTF1	INTF0	
	•						•	•		

ATmega32U6/AT90USB64/128

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1B (0x3B)	PCIFR	-	-	-	-	-	-	-	PCIF0	
0x1A (0x3A)	Reserved	-	-	-	-	-	-	-	-	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x38)	TIFR3	-	-	ICF3	-	OCF3C	OCF3B	OCF3A	TOV3	
0x17 (0x37)	TIFR2	-	-	-	-	-	OCF2B	OCF2A	TOV2	
0x16 (0x36)	TIFR1	-	-	ICF1	-	OCF1C	OCF1B	OCF1A	TOV1	
0x15 (0x35)	TIFR0	-	-	-	-	-	OCF0B	OCF0A	TOV0	
0x14 (0x34)	Reserved	-	-	-	-	-	-	-	-	
0x13 (0x33)	Reserved	-	-	-	-	-	-	-	-	
0x12 (0x32)	Reserved	-	-	-	-	-	-	-	-	
0x11 (0x31)	PORTF	PORTF7	PORTF6	PORTF5	PORTF4	PORTF3	PORTF2	PORTF1	PORTF0	
0x10 (0x30)	DDRF	DDF7	DDF6	DDF5	DDF4	DDF3	DDF2	DDF1	DDF0	
0x0F (0x2F)	PINF	PINF7	PINF6	PINF5	PINF4	PINF3	PINF2	PINF1	PINF0	
0x0E (0x2E)	PORTE	PORTE7	PORTE6	PORTE5	PORTE4	PORTE3	PORTE2	PORTE1	PORTE0	
0x0D (0x2D)	DDRE	DDE7	DDE6	DDE5	DDE4	DDE3	DDE2	DDE1	DDE0	
0x0C (0x2C)	PINE	PINE7	PINE6	PINE5	PINE4	PINE3	PINE2	PINE1	PINE0	
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	
0x08 (0x28)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	
0x07 (0x27)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	
0x06 (0x26)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	
0x02 (0x22)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	
0x01 (0x21)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	
0x00 (0x20)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	

Note:

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. I/O registers within the address range \$00 \$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses \$00 \$3F must be used. When addressing I/O registers as data space using LD and ST instructions, \$20 must be added to these addresses. The ATmega32U6/AT90USB64/128 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from \$60 \$1FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
	ARITHME	TIC AND LOGIC INSTRUCTIONS			
ADD	Rd, Rr	Add two Registers	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	Rd ← Rd - Rr - C	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd v Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow 0xFF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd v K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd – 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	Rd ← 0xFF	None	1
MUL	Rd, Rr	Multiply Unsigned	R1:R0 ← Rd x Rr	Z,C	2
MULS	Rd, Rr	Multiply Signed	R1:R0 ← Rd x Rr	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	R1:R0 ← Rd x Rr	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
	BI	RANCH INSTRUCTIONS			
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
EIJMP		Extended Indirect Jump to (Z)	PC ←(EIND:Z)	None	2
JMP	k	Direct Jump	PC ← k	None	3
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	4
ICALL		Indirect Call to (Z)	PC ← Z	None	4
EICALL		Extended Indirect Call to (Z)	PC ←(EIND:Z)	None	4
CALL	k	Direct Subroutine Call	PC ← k	None	5
RET		Subroutine Return	PC ← STACK	None	5
RETI		Interrupt Return	PC ← STACK	I	5
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC ← PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC ← PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC ← PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if $(T = 1)$ then $PC \leftarrow PC + k + 1$ if $(T = 0)$ then $PC \leftarrow PC + k + 1$		
		· ·	, ,	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(V = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2

■ ATmega32U6/AT90USB64/128

BRYC N	Mnemonics	Operands	Description	Operation	Flags	#Clocks
Section Sect	BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC ← PC + k + 1	None	1/2
SSI	BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
Sell P_b	BRID			if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
Call			1	1	T	1
1.58			· ·	, , ,	1	
LSR			-	, , ,		
FOLL Red Rouse Left Through Carry Regity-C-Regity C-Regity Z-C.R.V 1			-			1
SOR Ref			· · · · · · · · · · · · · · · · · · ·			1
ASR			<u> </u>			
SWAP Rid Sup Nikoles Rid S Rid S Norze 1			†			+
SSET S			-			1
BST	BSET	s	Flag Set		SREG(s)	1
BLD Rd. b Bet load from T to Register Rd00+T None 1	BCLR	s	Flag Clear	SREG(s) ← 0	SREG(s)	1
SEC Set Carry	BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
CLC	BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEN SEN Negative Flag N ← 1	SEC		Set Carry	C ← 1	С	1
CLIN Class Hegative Flag N ← 0 N 1			1	C ← 0		
SEZ						1
CLIZ Clear Zero Flag			i			1
SEI Global Interrupt Disable I+-1 I I I I I I I I I			i			1
CLI Global Interrupt Disabble 1← 0 1 2 2 1 2 3 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 <			ÿ			1
SES Set Signed Test Flag S +-1 S 1			'			1
CLIS			 			
SEV Sat Twas Complement Overflow.						1
CLIV Clear Twos Complement Overflow V ← 0 V 1			i			1
SET			· ·			1
CLT Clear T in SREG T+-0 T 1			· · · · · · · · · · · · · · · · · · ·			1
DATA TRANSFER INSTRUCTIONS						1
MOV Rd, Rr Move Between Registers Rd ← Rr None 1	SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
MOV Rd, Rr Move Between Registers Rd ← Rr None 1 MOVW Rd, Rr Copy Register Word Rd+:Rd ← Rr+t:Rr None 1 LDI Rd, K Load Immediate Rd ← K None 1 LD Rd, X Load Indirect Rd ← (X) None 2 LD Rd, X+ Load Indirect and Pre-Dec. X ← X + 1, Rd ← (X) None 2 LD Rd, Y Load Indirect and Pre-Dec. X ← X + 1, Rd ← (X) None 2 LD Rd, Y Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2 LD Rd, Y+ Load Indirect and Pre-Dec. Y ← Y + 1, Rd ← (Y) None 2 LD Rd, Y+ Load Indirect with Displacement Rd ← (Y), Y ← Y + 1 None 2 LD Rd, Z Load Indirect and Post-Inc. Rd ← (Z) None 2 LD Rd, Z Load Indirect with Displacement Rd ← (Z) None 2 LD Rd, Z Load Indirect with Displacement	CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		DATA	TRANSFER INSTRUCTIONS			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOV	Rd, Rr	Move Between Registers		None	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$., .			1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			†			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			 	` '		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				` '		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1. 7.	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			· ·			1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			 			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					None	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			†			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			·			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	†		1	1
LPM Rd, Z+ Load Program Memory and Post-Inc Rd \leftarrow (Z), Z \leftarrow Z+1 None 3 ELPM Extended Load Program Memory R0 \leftarrow (RAMPZ:Z) None 3 ELPM Rd, Z Extended Load Program Memory Rd \leftarrow (Z) None 3		Rd, Z				1
ELPM Extended Load Program Memory R0 \leftarrow (RAMPZ:Z) None 3 ELPM Rd, Z Extended Load Program Memory Rd \leftarrow (Z) None 3			i i			
	ELPM	Rd, Z	Extended Load Program Memory	$Rd \leftarrow (Z)$	None	3
	ELPM	Rd, Z+	Extended Load Program Memory	$Rd \leftarrow (RAMPZ:Z), RAMPZ:Z \leftarrow RAMPZ:Z+1$	None	3

Mnemonics	Operands	Description	Operation	Flags	#Clocks
SPM		Store Program Memory	(Z) ← R1:R0	None	-
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	$Rd \leftarrow STACK$	None	2
	MCU	CONTROL INSTRUCTIONS			
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

6. Ordering Information

6.1 ATmega32U6

Speed(MHz)	Power Supply(V)	Ordering Code ⁽²⁾	USB Interface	Package ⁽¹⁾	Operating Range
20 ⁽³⁾	2.7-5.5	ATmega32U6-AU ATmega32U6-MU	Host (OTG)	MD PS	Industrial (-40°to +85℃)

Notes:

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See "Maximum speed vs. VCC" on page 400.

MD	64 - Lead, 14x14 mm Body Size, 1.0mm Body Thickness 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
PS	64 - Lead, 9x9 mm Body Size, 0.50mm Pitch Quad Flat No Lead Package (QFN)

6.2 AT90USB646

Speed(MHz)	Power Supply(V)	Ordering Code ⁽²⁾	USB Interface	Package ⁽¹⁾	Operating Range
20 ⁽³⁾	2.7-5.5	AT90USB646-AU AT90USB646-MU	Device	MD PS	Industrial (-40°to +85℃)

- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
 - 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also Halide free and fully Green.
 - 3. See "Maximum speed vs. VCC" on page 400.

MD	64 - Lead, 14x14 mm Body Size, 1.0mm Body Thickness 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
PS	64 - Lead, 9x9 mm Body Size, 0.50mm Pitch Quad Flat No Lead Package (QFN)

6.3 AT90USB647

Speed(MHz)	Power Supply(V)	Ordering Code ⁽²⁾	USB Interface	Package ⁽¹⁾	Operating Range
20 ⁽³⁾	2.7-5.5	AT90USB647-AU AT90USB647-MU	Device	MD PS	Industrial (-40°to +85℃)

- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
 - 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also Halide free and fully Green.
 - 3. See "Maximum speed vs. VCC" on page 400.

MD	64 - Lead, 14x14 mm Body Size, 1.0mm Body Thickness 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)	
64 - Lead, 9x9 mm Body Size, 0.50mm Pitch Quad Flat No Lead Package (QFN)		

6.4 AT90USB1286

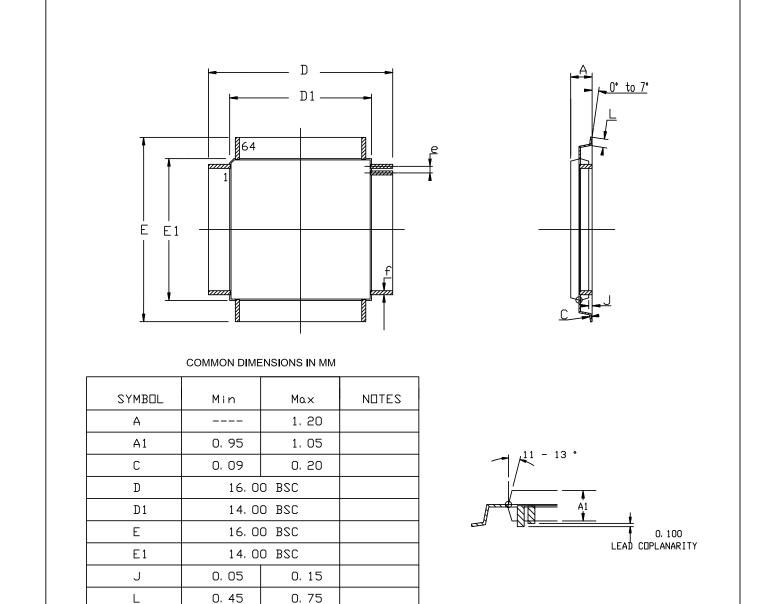
Speed(MHz)	Power Supply(V)	Ordering Code ⁽²⁾	USB Interface	Package ⁽¹⁾	Operating Range
20 ⁽³⁾	2.7-5.5	AT90USB1286-AU AT90USB1286-MU	Host (OTG)	MD PS	Industrial (-40°to +85℃)

- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
 - 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also Halide free and fully Green.
 - 3. See "Maximum speed vs. VCC" on page 400.

MD	64 - Lead, 14x14 mm Body Size, 1.0mm Body Thickness 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)	
64 - Lead, 9x9 mm Body Size, 0.50mm Pitch Quad Flat No Lead Package (QFN)		

6.5 AT90USB1287

Speed(MHz)	Power Supply(V)	Ordering Code ⁽²⁾	USB Interface	Package ⁽¹⁾	Operating Range
20 ⁽³⁾	2.7-5.5	AT90USB1287-AU AT90USB1287-MU	Device	MD PS	Industrial (-40°to +85℃)


- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
 - 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also Halide free and fully Green.
 - 3. See "Maximum speed vs. VCC" on page 400.

MD	64 - Lead, 14x14 mm Body Size, 1.0mm Body Thickness 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)	
64 - Lead, 9x9 mm Body Size, 0.50mm Pitch Quad Flat No Lead Package (QFN)		

6.6 TQFP64

Atmel Nantes S.A.
La Chantrerie - BP 70602
44306 Nantes Cedex 3 - France

TITLE

MD, 64 - Lead, 14x14 mm Body Size, 1.0 mm Body Thickness
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

DRAWING No.

REV.

MD

O. 80 BSC

0.45

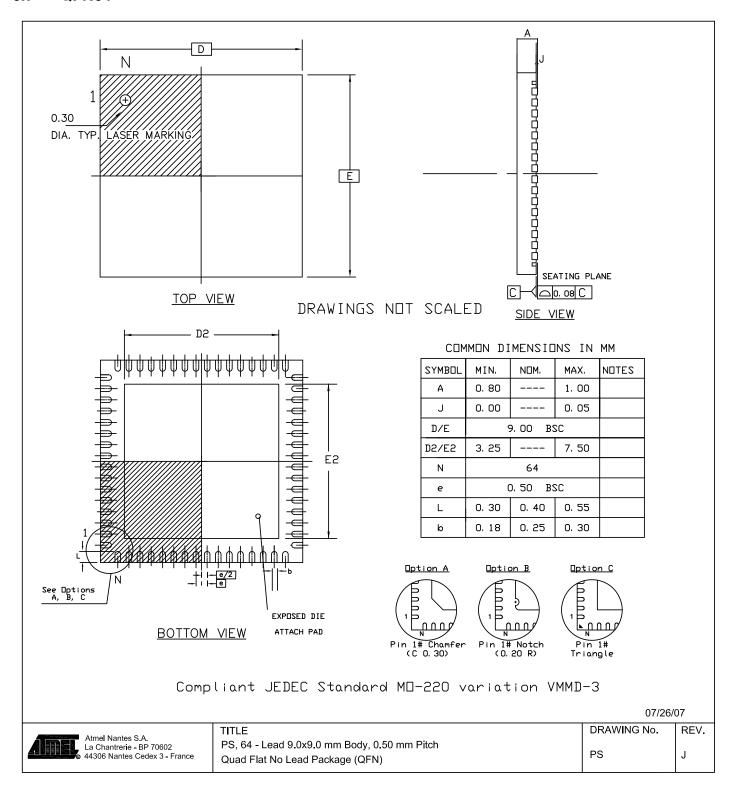
0.30

f

07/26/07

NOTES: STANDARD NOTES FOR PQFP/VQFP/TQFP/DQFP

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M. 1982.
- 2. "D1 AND E1" DIMENSIONS DO NOT INCLUDE MOLD PROTUSIONS MOLD PROTUSIONS SHALL NOT EXCEED 0.25 mm (0.010 INCH).


 THE TOP PACKAGE BODY SIZE MAY BE SMALLER THAN THE BOTTOM PACKAGE BODY SIZE BY AS MUCH AS 0.15 mm.
- 3. DATUM PLANE "H" LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXISTS PLASTIC BODY AT BOTTOM OF PARTING LINE.
- 4. DATUM "A" AND "D" TO BE DETERMINED AT DATUM PLANE H.
- 5. DIMENSION "f" DOES NOT INCLUDE DAMBAR PROTUSION ALLOWABLE DAMBAR PROTUSION SHALL BE 0.08 mm/.003" TOTAL EXCESS OF THE "f" DIMENSION AT MAXIMUM MATERIAL CONDITION.

DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.

6.7 QFN64

NOTES: QFN STANDARD NOTES

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M. 1994.
- 2. DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION 6 SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- 3. MAX. PACKAGE WARPAGE IS 0.05mm.
- 4. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.
- 5. PIN #1 ID ON TOP WILL BE LASER MARKED.
- 6. THIS DRAWING CONFORMES TO JEDEC REGISTERED OUTLINE MO-220.
- 7. A MAXIMUM 0.15mm PULL BACK (L1) MAY BE PRESENT.
 - L MINUS L1 TO BE EQUAL TO OR GREATER THAN 0.30 mm
- 8. THE TERMINAL #1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.

 THE TERMINAL #1 IDENTIFIER BE EITHER A MOLD OR MARKED FEATURE

7. Errata

AT90USB1287/6 Errata.

8.1 AT90USB1287/6 Errata History

Silicon Release	90USB1286-16MU	90USB1287-16AU	90USB1287-16MU
First Release	Date Code up to 0648	Date Code up to 0714 and lots 0735 6H2726*	Date Code up to 0701
Second Release	Date Code from 0709 to 0801 except lots 0801 7H5103*	from Date Code 0722 to 0806 except lots 0735 6H2726*	Date Code from 0714 to 0810 except lots 0748 7H5103*
Third Release	Lots 0801 7H5103* and Date Code from 0814	Date Code from 0814	Lots 0748 7H5103* and Date Code from 0814

Note '*' means a blank or any alphanumeric string

8.2 AT90USB1287/6 First Release

- Incorrect CPU behavior for VBUSTI and IDTI interrupts routines
- USB Eye Diagram violation in low-speed mode
- Transient perturbation in USB suspend mode generates over consumption
- VBUS Session valid threshold voltage
- USB signal rate
- VBUS residual level
- · Spike on TWI pins when TWI is enabled
- High current consumption in sleep mode
- Async timer interrupt wake up from sleep generate multiple interrupts

9. Incorrect CPU behavior for VBUSTI and IDTI interrupts routines

The CPU core may incorrectly execute the interrupt vector related to the VBUSTI and IDTI interrupt flags.

Problem fix/workaround

Do not enable these interrupts, firmware must process these USB events by polling VBUSTI and IDTI flags.

8. USB Eye Diagram violation in low-speed mode

The low to high transition of D- violates the USB eye diagram specification when transmitting with low-speed signaling.

Problem fix/workaround

None.

7. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the USB lines generates a wake up state. However the idle state following the perturbation does

not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the USB differential receiver is still enabled and generates a typical 300µA extra-power consumption. Detection of the suspend state after the transient perturbation should be performed by software (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

6. VBUS Session valid threshold voltage

The VSession valid threshold voltage is internally connected to VBus_Valid (4.4V approx.). That causes the device to attach to the bus only when Vbus is greater than VBusValid instead of V Session Valid. Thus if VBUS is lower than 4.4V, the device is detached.

Problem fix/workaround

According to the USB power drop budget, this may require connecting the device to aroot hub or a self-powered hub.

5. UBS signal rate

The average USB signal rate may sometime be measured out of the USB specifications (12MHz ±30kHz) with short frames. When measured on a long period, the average signal rate value complies with the specifications. This bit rate deviation does not generates communication or functional errors.

Problem fix/workaround

None.

4. VBUS residual level

In USB device and host mode, once a 5V level has been detected to the VBUS pad, a residual level (about 3V) can be measured on the VBUS pin.

Problem fix/workaround

None.

3. Spike on TWI pins when TWI is enabled

100 ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem Fix/workaround

No known workaround, enable ATmega32U6/AT90USB64/128 TWI first versus the others nodes of the TWI network.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should be disabled.

1. Asynchronous timer interrupt wake up from sleep generates multiple interrupts

If the CPU core is in sleep and wakes-up from an asynchronous timer interrupt and then go back in sleep again it may wake up multiple times.

Problem Fix/workaround

A software workaround is to wait with performing the sleep instruction until TCNT2>OCR2+1.

8.3 AT90USB1287/6 Second Release

- Incorrect CPU behavior for VBUSTI and IDTI interrupts routines
- USB Eye Diagram violation in low-speed mode
- Transient perturbation in USB suspend mode generates over consumption
- VBUS Session valid threshold voltage
- · Spike on TWI pins when TWI is enabled
- High current consumption in sleep mode
- Async timer interrupt wake up from sleep generate multiple interrupts

7. Incorrect CPU behavior for VBUSTI and IDTI interrupts routines

The CPU core may incorrectly execute the interrupt vector related to the VBUSTI and IDTI interrupt flags.

Problem fix/workaround

Do not enable these interrupts, firmware must process these USB events by polling VBUSTI and IDTI flags.

6. USB Eye Diagram violation in low-speed mode

The low to high transition of D- violates the USB eye diagram specification when transmitting with low-speed signaling.

Problem fix/workaround

None.

5. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the USB lines generates a wake up state. However the idle state following the perturbation does not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the USB differential receiver is still enabled and generates a typical 300µA extra-power consumption. Detection of the suspend state after the transient perturbation should be performed by software (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

4. VBUS Session valid threshold voltage

The VSession valid threshold voltage is internally connected to VBus_Valid (4.4V approx.). That causes the device to attach to the bus only when Vbus is greater than VBusValid instead of V_Session Valid. Thus if VBUS is lower than 4.4V, the device is detached.

Problem fix/workaround

According to the USB power drop budget, this may require connecting the device toa root hub or a self-powered hub.

3. Spike on TWI pins when TWI is enabled

100 ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem Fix/workaround

No known workaround, enable ATmega32U6/AT90USB64/128 TWI first versus the others nodes of the TWI network.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should be disabled.

1. Asynchronous timer interrupt wake up from sleep generates multiple interrupts

If the CPU core is in sleep and wakes-up from an asynchronous timer interrupt and then go back in sleep again it may wake up multiple times.

Problem Fix/workaround

A software workaround is to wait with performing the sleep instruction until TCNT2>OCR2+1.

8.4 AT90USB1287/6 Third Release

- Incorrect CPU behavior for VBUSTI and IDTI interrupts routines
- Transient perturbation in USB suspend mode generates over consumption
- Spike on TWI pins when TWI is enabled
- High current consumption in sleep mode
- Async timer interrupt wake up from sleep generate multiple interrupts

5. Incorrect CPU behavior for VBUSTI and IDTI interrupts routines

The CPU core may incorrectly execute the interrupt vector related to the VBUSTI and IDTI interrupt flags.

Problem fix/workaround

Do not enable these interrupts, firmware must process these USB events by polling VBUSTI and IDTI flags.

4. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the USB lines generates a wake up state. However the idle state following the perturbation does not set the SUSPI bit. The internal USB engine remains in suspend mode but the USB differential receiver is still enabled and generates a typical 300µA extra-power consumption. Detection of the suspend state after the transient perturbation should be performed by software (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

3. Spike on TWI pins when TWI is enabled

100 ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem Fix/workaround

No known workaround, enable ATmega32U6/AT90USB64/128 TWI first, before the others nodes of the TWI network.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/workaround

Before entering sleep, interrupts not used to wake up the part from sleep mode should be disabled.

1. Asynchronous timer interrupt wake up from sleep generates multiple interrupts

If the CPU core is in sleep mode and wakes-up from an asynchronous timer interrupt and then goes back into sleep mode, it may wake up multiple times.

Problem Fix/workaround

A software workaround is to wait beforeperforming the sleep instruction: until TCNT2>OCR2+1.

AT90USB647/6 Errata.

- Incorrect interrupt routine exection for VBUSTI, IDTI interrupts flags
- USB Eye Diagram violation in low-speed mode
- Transient perturbation in USB suspend mode generates over consumption
- Spike on TWI pins when TWI is enabled
- High current consumption in sleep mode
- Async timer interrupt wake up from sleep generate multiple interrupts

6. Incorrect CPU behavior for VBUSTI and IDTI interrupts routines

The CPU core may incorrectly execute the interrupt vector related to the VBUSTI and IDTI interrupt flags.

Problem fix/workaround

Do not enable these interrupts, firmware must process these USB events by polling VBUSTI and IDTI flags.

5. USB Eye Diagram violation in low-speed mode

The low to high transition of D- violates the USB eye diagram specification when transmitting with low-speed signaling.

Problem fix/workaround

None.

4. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the USB lines generates a wake up state. However the idle state following the perturbation does not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the USB differential receiver is still enabled and generates a typical 300µA extra-power consumption. Detection of the suspend state after the transient perturbation should be performed by software (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

3. Spike on TWI pins when TWI is enabled

100 ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem Fix/workaround

No known workaround, enable ATmega32U6/AT90USB64/128 TWI first versus the others nodes of the TWI network.

2. High current consumption in sleep mode

ATmega32U6/AT90USB64/128

If a pending interrupt cannot wake the part up from the selected mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should be disabled.

1. Asynchronous timer interrupt wake up from sleep generates multiple interrupts If the CPU core is in sleep and wakes-up from an asynchronous timer interrupt and then go back in sleep mode again it may wake up several times.

Problem Fix/workaround

A software workaround is to wait with performing the sleep instruction until TCNT2>OCR2+1.

10. Datasheet Revision History for ATmega32U6/AT90USB64/128

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

10.1 Changes from 7593A to 7593B

- 1. Changed default configuration for fuse bytes and security byte.
- 2. Suppression of timer 4,5 registers which does not exist.
- 3. Updated typical application schematics in USB section

10.2 Changes from 7593B to 7593C

1. Update to package drawings, MQFP64 and TQFP64.

10.3 Changes from 7593C to 7593D

For further product compatibility, changed USB PLL possible prescaler configurations.
 Only 8MHz and 16MHz crystal frequencies allows USB operation (See Table 6-11 on page 49).

10.4 Changes from 7593D to 7593E

- 1. Updated PLL Prescaler table: configuration words are different between AT90USB64x and AT90USB128x to enable the PLL with a 16 MHz source.
- 2. Cleaned up some bits from USB registers, and updated information about OTG timers, remote wake-up, reset and connection timings.
- 3. Updated clock distribution tree diagram (USB prescaler source and configuration register).
- 4. Cleaned up register summary.
- 5. Suppressed PCINT23:8 that do not exist from External Interrupts.
- 6. Updated Electrical Characteristics.
- 7. Added Typical Characteristics.
- 8. Update Errata section.

10.5 Changes from 7593E to 7593F

- 1. Removed 'Preliminary' from document status.
- 2. Clarification in Stand by mode regarding USB.

10.6 Changes from 7593F to 7593G

1. Updated Errata section.

10.7 Changes from 7593G to 7593H

34

- 1. Added Signature information for 64K devices.
- Fixed figure for typical bus powered application
- 3. Added min/max values for BOD levels
- 4. Added ATmega32U6 product
- 5. Update Errata section
- 6. Modified descriptions for HWUPE and WAKEUPE interrupts enable (these interrupts should be enabled only to wake up the CPU core from power down mode).

ATmega32U6/AT90USB64/128

7. Added description to access unique serial number located in Signature Row see "Reading the Signature Row from Software" on page 360.

10.8 Changes from 7593H to 7593I

1. Updated Table 8-2 in "Brown-out Detection" on page 60. Unused BOD levels removed.

10.9 Changes from 7593I to 7593J

- 1. Updated Table 8-2 in "Brown-out Detection" on page 60. BOD level 100 removed.
- 2. Updated "Ordering Information" on page 17.
- 3. Removed ATmega32U6 errata section.

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong

Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-

Yvelines Cedex France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

avr@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel logo and combinations thereof, AVR® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.