HESTORE.HU

EN: This Datasheet is presented by the manufacturer.
Please visit our website for pricing and availability at www.hestore.hu.

OmROח

General-purpose Relay MY

Versatile and Function-filled Miniature Power Relay for Sequence Control and Power Switching Applications

- Models with lockable test buttons now available.
- Many variations possible through a selection of operation indicators (mechanical and LED indicators), lockable test button, built-in diode and CR (surge suppression), bifurcated contacts, etc.
- Arc barrier standard on 4-pole Relays.
- Dielectric strength: 2,000 VAC (coil to contact)
- Environment-friendly cadmium-free contacts.
- Safety standard approvals obtained.

- Wide range of Sockets (PY, PYF Series) and optional parts are available.
- Max. Switching Current: 2-pole: 10 A, 4-pole: 5 A
- Provided with nameplate.

Ordering Information

\square Relays

Standard Coil Polarity

Type	Contact form	Plug-in socket/Solder terminals		Without LED indicator
		Standard with LED indicator	With LED indicator and lockable test button	
Standard	DPDT	MY2N	MY2IN	MY2
	4PDT	MY4N	MY4IN	MY4
	4PDT (bifurcated)	MY4ZN	MY4ZIN	MY4Z
With built-in diode (DC only)	DPDT	MY2N-D2	MY2IN-D2	---
	4PDT	MY4N-D2	MY4IN-D2	---
	4PDT (bifurcated)	MY4ZN-D2	MY4ZIN-D2	---
With built-in CR (220/240 VAC, 110/120 VAC only)	DPDT	MY2N-CR	MY2IN-CR	---
	4PDT	MY4N-CR	MY4IN-CR	---
	4PDT (bifurcated)	MY4ZN-CR	MY4ZIN-CR	---

Reverse Coil Polarity

Type	Contact form		Plug-in socket/Solder terminals	
		With LED indicator	With LED indicator and lockable test button	
	DPDT	MY2N1	MY2IN1	
	4PDT	MY4N1	MY4IN1	
	4PDT (bifurcated)	MY4ZN1	MY4ZIN1	
With built-in diode (DC only)	MPDT	MY2N1-D2	MY2IN1-D2	
	4PDT	MY4ZN1-D2	MY4IN1-D2	
	4PDT (bifurcated)	MY4ZIN1-D2		

Note: When ordering, add the rated coil voltage and "(s)" to the model number. Rated coil voltages are given in the coil ratings table.
Example: MY2 $\frac{6 \mathrm{VAC}}{4}$ (S)
Rated coil voltage

Accessories (Order Separately)

Sockets

Poles	Front Mounting Socket (DIN-rail/ screwless clamp [SLC])	Front-mounting Socket (DIN-rail/ screw mounting)	Back-mounting Socket				
			Solder terminals		Wire-wrap terminals		PCB terminals
			Without clip	With clip	Without clip	With clip	
2	PYF08S	$\begin{aligned} & \text { PYF08A-E } \\ & \text { PYF08A-N } \end{aligned}$	PY08	PY08-Y1	$\begin{aligned} & \hline \text { PY08QN } \\ & \text { PY08QN2 } \end{aligned}$	PY08QN-Y1 PY08QN2-Y1	PY08-02
4	PYF14S	PYF14A-E PYF14A-N PYF14-ESS-B PYF14-ESN-B	PY14	PY14-Y1	PY14QN PY14QN2	PY14QN-Y1 PY14QN2-Y1	PY14-02

Socket Hold-down Clip Pairing

Relay type	Poles	Front Mounting Socket (DIN-rail/screwless clamp [SLC])		Front-connecting Socket (DIN-rail screw mounting)		Back-connecting Socket					
				Solder/Wire-wrap terminals	PCB terminals						
				Socket	Clip	Socket	Clip	Socket	Clip		
Without 2-pole test button	2	PYF08S	PYCM-08S			$\begin{aligned} & \text { PYF08A-E } \\ & \text { PYF08A-N } \end{aligned}$	PYC-A1	PY08(QN)	$\begin{aligned} & \text { PYC-P } \\ & \text { PYC-P2 } \end{aligned}$	PY08-02	$\begin{aligned} & \text { PYC-P } \\ & \text { PYC-P2 } \end{aligned}$
	4	PYF14S	PYCM-14S	$\begin{aligned} & \text { PYF14A-E } \\ & \text { PYF14A-N } \end{aligned}$	PY14(QN)	PY14-02					
				PYF14-ESS-B PYF14-ESN-B			PYC-0 (metal) PYC35-B (plastic)				
2-pole test button	2	PYF08S	PYCM-08S	$\begin{aligned} & \text { PYF08A-E } \\ & \text { PYF08A-N } \end{aligned}$	PYC-E1	PY08(QN)	PYC-P2	PY08-02	PYC-P2		

Mounting Plates for Sockets

Socket model	For 1 Socket	For 18 Sockets	For 36 Sockets
PY08, PY08QN(2), PY14, PY14QN(2)	PYP-1	PYP-18	PYP-36

Note: PYP-18 and PYP-36 can be cut into any desired length in accordance with the number of Sockets.
DIN-rail and Accessories

Supporting DIN-rail (length $=\mathbf{5 0 0} \mathbf{~ m m}$)	PFP-50N
Supporting DIN-rail (length $=\mathbf{1 , 0 0 0} \mathbf{~ m m}$)	PFP-100N, PFP-100N2
End Plate	PFP-M
Spacer	PFP-S

Specifications

Coil Ratings

Rated voltage		Rated current		Coil resistance 12.2Ω	Coil inductance (reference value)		$\left.\begin{array}{l}\begin{array}{c}\begin{array}{c}\text { Must } \\ \text { operate } \\ \text { voltage }\end{array}\end{array} \begin{array}{c}\text { Must } \\ \text { release } \\ \text { voltage }\end{array}\end{array} \begin{array}{c}\text { Max. } \\ \text { voltage }\end{array}\right]$			Powerconsumption(approx.)
		50 Hz	60 Hz		$$	Arm. ON 0.08 H				
AC	$6 \mathrm{~V}^{*}$	214.1 mA	183 mA				80\% max.	30\% min.	110\%	$\begin{aligned} & 1.0 \text { to } 1.2 \mathrm{VA} \\ & (60 \mathrm{~Hz}) \end{aligned}$
	12 V	106.5 mA	91 mA	46Ω	0.17 H	0.33 H				
	24 V	53.8 mA	46 mA	180Ω	0.69 H	1.30 H				
	48/50 V*	$\begin{aligned} & 24.7 / \\ & 25.7 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 21.1 / \\ & 22.0 \mathrm{~mA} \end{aligned}$	788Ω	3.22 H	5.66 H				
	110/120 V	9.9/10.8 mA	8.4/9.2 mA	4,430 Ω	19.20 H	32.1 H				$0.9 \text { to } 1.1 \mathrm{VA}$
	220/240 V	$4.8 / 5.3 \mathrm{~mA}$	4.2/4.6 mA	18,790 Ω	83.50 H	136.4 H				
DC	$6 \mathrm{~V}^{*}$	151 mA		39.8Ω	0.17 H	0.33 H		10\% min.		0.9 W
	12 V	75 mA		160Ω	0.73 H	1.37 H				
	24 V	37.7 mA		636Ω	3.20 H	5.72 H				
	$48 \mathrm{~V}^{*}$	18.8 mA		2,560 Ω	10.60 H	21.0 H				
	100/110 V	9.0/9.9 mA		11,100 Ω	45.60 H	86.2 H				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for rated currents and $\pm 15 \%$ for DC coil resistance.
2. Performance characteristic data are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. AC coil resistance and impedance are provided as reference values (at 60 Hz).
4. Power consumption drop was measured for the above data. When driving transistors, check leakage current and connect a bleeder resistor if required.
5. Rated voltage denoted by "*" will be manufactured upon request. Ask your OMRON representative.

Contact Ratings

Item	2-pole		4-pole		4-pole (bifurcated)	
	Resistive load $(\cos \phi=1)$	$\begin{gathered} \text { Inductive load } \\ (\cos \phi=0.4, L / R=7 \mathrm{~ms}) \end{gathered}$	Resistive load $(\cos \phi=1)$	$\begin{gathered} \text { Inductive load } \\ (\cos \phi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{gathered}$	$\begin{aligned} & \text { Resistive load } \\ & (\cos \phi=1) \\ & \hline \end{aligned}$	$\begin{gathered} \text { Inductive load } \\ (\cos \phi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{gathered}$
Rated load	$\begin{aligned} & \text { 5A, } 250 \text { VAC } \\ & 5 \mathrm{~A}, 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~A}, 250 \mathrm{VAC} \\ & 2 \mathrm{~A}, 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~A}, 250 \mathrm{VAC} \\ & 3 \mathrm{~A}, 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~A}, 250 \mathrm{VAC} \\ & 1.5 \mathrm{~A}, 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~A}, 250 \mathrm{VAC} \\ & 3 \mathrm{~A}, 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~A}, 250 \mathrm{VAC} \\ & 1.5 \mathrm{~A}, 30 \mathrm{VDC} \end{aligned}$
Carry current	10 A (see note)		5 A (see note)			
Max. switching voltage	$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$		$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$			
Max. switching current	10 A		5 A			
Max. switching power	$\begin{aligned} & 2,500 \mathrm{VA} \\ & 300 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1,250 \mathrm{VA} \\ & 300 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1,250 \mathrm{VA} \\ & 150 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 500 \mathrm{VA} \\ & 150 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 1,250 \mathrm{VA} \\ & 150 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 500 \mathrm{VA} \\ & 150 \mathrm{~W} \end{aligned}$
Failure rate (reference value)	$5 \mathrm{VDC}, 1 \mathrm{~mA}$		$1 \mathrm{VDC}, 1 \mathrm{~mA}$		1 VDC, $100 \mu \mathrm{~A}$	

Note: Don't exceed the carry current of a Socket in use. Please see page G-10.

Characteristics

Item	All Relays
Contact resistance	$100 \mathrm{~m} \Omega$ max.
Operate time	20 ms max .
Release time	20 ms max.
Max. operating frequency	Mechanical: 18,000 operations $/ \mathrm{hr}$ Electrical: 1,800 operations $/ \mathrm{hr}$ (under rated load)
Insulation resistance	1,000 M
Dielectric strength	2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1.0 min ($1,000 \mathrm{VAC}$ between contacts of same polarity)
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 0.5 \mathrm{~mm}$ single amplitude (1.0 mm double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 0.5 \mathrm{~mm}$ single amplitude (1.0 mm double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $200 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	See the following table.
Ambient temperature	Operating: $-55^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 5\% to 85\%
Weight	Approx. 35 g

Note: The values given above are initial values.
Endurance Characteristics

Pole	Mechanical life (at 18,000 operations/hr)	Electrical life (at 1,800 operations/hr under rated load)
2-pole	AC:50,000,000 operations min.	500,000 operations min.
4-pole	DC:100,000,000 operations min.	200,000 operations min.
4-pole (bifurcated)	$20,000,000$ operations min.	100,000 operations min.

Approved Standards

VDE Recognitions (File No. 112467UG, IEC 255, VDE 0435)

No. of poles	Coil ratings	Contact ratings	Operations
2	$\begin{aligned} & 6,12,24,48 / 50,100 / 110 \\ & 110 / 120,200 / 220, \end{aligned}$	10 A, 250 VAC ($\cos \phi=1$) $10 \mathrm{~A}, 30 \mathrm{VDC}$ (L/R=0 ms)	10×10^{3}
4	$\begin{aligned} & \text { 220/240 VAC } \\ & 6,12,24,48,100 / 110, \\ & 125 \text { VDC } \end{aligned}$	5 A, 250 VAC $(\cos \phi=1)$ 5 A, 30 VDC (L/R=0 ms)	$\begin{aligned} & 100 \times 10^{3} \\ & \text { MY4Z AC; } 50 \times 10^{3} \end{aligned}$

UL508 Recognitions (File No. 41515)

No. of poles	Coil ratings	Contact ratings	Operations
2	$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	10 A, 30 VDC (General purpose) 10 A, 250 VAC (General purpose)	6×10^{3}
4		5 A, 250 VAC (General purpose) 5 A, 30 VDC (General purpose)	

CSA C22.2 No. 14 Listings (File No. LR31928)

No. of poles	Coil ratings	Contact ratings	Operations
2	$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A}, 30 \text { VDC } \\ & 10 \mathrm{~A}, 250 \text { VAC } \end{aligned}$	6×10^{3}
4		5 A, 250 VAC (Same polarity) 5 A, 30 VDC (Same polarity)	

IMQ (File No. EN013 to 016)

No. of poles	Coil ratings	Contact ratings	Operations
2	$\begin{aligned} & \text { 6, 12, 24, 48/50, 100/110 } \\ & 110 / 120,200 / 220, \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A}, 30 \mathrm{VDC} \\ & 10 \mathrm{~A}, 250 \mathrm{VAC} \end{aligned}$	10×10^{3}
4	$\begin{aligned} & 220 / 240 \text { VAC } \\ & 6,12,24,48,100 / 110, \\ & 125 \text { VDC } \end{aligned}$	$\begin{aligned} & 5 \text { A, } 250 \text { VAC } \\ & 5 \text { A, } 30 \text { VDC } \end{aligned}$	$\begin{aligned} & 100 \times 10^{3} \\ & \text { MY4Z AC; } 50 \times 10^{3} \end{aligned}$

LR Recognitions (File No. 98/10014)

No. of poles	Coil ratings	Contact ratings	Operations
2	6 to 240 VAC 6 to 125 VDC	10 A, 250 VAC (Resistive) 2 A, 250 VAC (PF0.4) 10 A, 30 VDC (Resistive) $2 \mathrm{~A}, 30 \mathrm{VDC}$ (L/R=7 ms)	50×10^{3}
4		5 A, 250 VAC (Resistive) 0.8 A, 250 VAC (PF0.4) $5 \mathrm{~A}, 30$ VDC (Resistive) 1.5 A, $30 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	50×10^{3}

SEV Listings (File No. 99.5 50902.01)

No. of poles	Coil ratings	Contact ratings	Operations
2	6 to 240 VAC 6 to 125 VDC	$\begin{aligned} & 10 \text { A, } 250 \text { VAC } \\ & 10 \text { A, } 30 \text { VDC } \end{aligned}$	10×10^{3}
4		$\begin{aligned} & 5 \text { A, } 250 \text { VAC } \\ & 5 \text { A, } 30 \text { VDC } \end{aligned}$	$\begin{aligned} & 100 \times 10^{3} \\ & \text { MY4Z AC; } 50 \times 10^{3} \end{aligned}$

Engineering Data

Maximum Switching Power

Endurance

MY4 (Resistive Loads)

MY4, MY4Z

MY2 (Inductive Loads)

MY4 (Inductive Loads)

MY4Z (Resistive Loads)

MY4Z (Inductive Loads)

Technical and Environmental Properties

	2-Pole model	4-Pole model
DIN-railing Resistance	600 CTI (base)	600 CTI (base)
Environmental Protection	RT1	RT1
Flammability Class	Base, Insulator, Spool Case, Indicator, Nameplate, Push Button	
Pollution Degree	2	ul94V-0 ul 94V-2
Creepage Distance	4.0 mm	1
Clearance Distance	3.0 mm	3.2 mm
Contact Material	Ag	3.0 mm

Two-way action test button

Relay in normal operation

For momentary operation

Push up the test button to the first position, then press the yellow button with an insulated tool to operate the contact.

For lock operation

Push up the test button to the second position. (The contact is now in the locked position).

Typical information for reference only

The following data is provided as experimental and/or calculated data for reference only. These figures fall under the category of typical behaviour and the operation of individual relays will vary according to the exact operating conditions.

Multiple Contact DC Switching Capacity
Switching capacity of DC resistive load

This graph can be used to estimate the number of contacts that can be used to switch DC resistive loads

2-Pole model	4-Pole model
$8 \mathrm{~ms} / 8 \mathrm{~ms}$	$10 \mathrm{~ms} / 10 \mathrm{~ms}$
$14 \mathrm{~ms} / 4 \mathrm{~ms}$	$14 \mathrm{~ms} / 6 \mathrm{~ms}$

For AC inductive loads (such as solenoids, contactors coils, etc.) the reduction factor corresponding to $\cos ($ p.f.) (cosine of the power factor) is multiplied by the rated current in order to identify the maximum allowable current. This approximation is not valid for loads with high inrush currents such as electric motors or fluorescent lamps.

Effect of temperature on coil voltages
MY2/4 Operating range (DC and AC type) vs ambient temperature

This graph shows the typical relationship between the maximum / minimum coil and pick-up voltage and ambient temperature

Dimensions

Note: All units are in millimeters unless otherwise indicated.

2-Pole Models

MY2N

4-Pole Models

MY4N

Models with Test Button

MY2IN

MY4IN

Terminal Arrangement/Internal Connections (Bottom View)

MY2

MY4(Z)

MY2N/MY2IN (AC Models)

MY2N-CR/MY2IN-CR (AC Models Only)

MY4(Z)N/MY4(Z)IN (AC Models)

MY4(Z)N-CR/MY4(Z)IN-CR (AC Models Only)

MY2N/MY2IN
(DC Models)

MY2N1/MY2IN1 (DC Models Only)

MY4(Z)N/MY4(Z)IN (DC Models)

MY4(Z)N1/MY4(Z)IN1 (DC Models Only)

MY2N-D2/MY2IN-D2
(DC Models Only)

MY2N1-D2/MY2IN1-D2 (DC Models Only)

MY4(Z)N-D/MY4(Z)IN-D2 (DC Models Only)

MY4(Z)N1-D2/MY4(Z)IN1-D2 (DC Models Only)

Note: The DC models have polarity.

Sockets for MY

DIN-rail-mounted (DIN-rail) Socket
 Conforms to VDE 0106, Part 100

- Snap into position along continuous sections of any mounting DIN-rail.
- Facilitates sheet metal design by standardized mounting dimensions.
- Design with sufficient dielectric separation between terminals eliminates the need of any insulating sheet.

Safety Standards for Sockets

Model	Standards	File No.
PYF08A-E, PYF08A-N	PYF14A-E, PYF14A-N	UL508
	CSA22.2	E87929
PYF14-ESN-B,	UL508	LR31928
	CSA22.2	E244189

Back-connecting Sockets

- Specifications

Item	Pole	Model	Carry current	Dielectric withstand voltage	Insulation resistance (see note 2)
Screwless Clamp Terminal Socket	2	PYF08S	10 A	2,000 VAC, 1 min	Less than 1,000 M
	4	PYF14S	5 A		
DIN-rail-mounted Socket	2	PYF08A-E	7 A	2,000 VAC, 1 min	1,000 M M min.
		PYF08A-N (see note 3)	7 A (see note 4)		
	4	PYF14A-E	5 A		
		PYF14A-N (see note 3)	5 A (see note 4)		
	4	PYF14-ESN-B/-ESS-B	12 A	> 3 kV	$>5 \mathrm{M} \Omega$
Back-connecting Socket	2	PY08(-Y1)	7 A	1,500 VAC, 1 min	$100 \mathrm{M} \Omega \mathrm{min}$.
		PY08QN(-Y1)			
		PY08-02			
	4	PY14(-Y1)	3 A		
		PY14QN(-Y1)			
		PY14-02			

Note: 1. The values given above are initial values.
2. The values for insulation resistance were measured at 500 V at the same place as the dielectric strength.
3. The maximum operating ambient temperature for the PYF08A-N and PYF14A-N is $55^{\circ} \mathrm{C}$.
4. When using the PYF08A-N or PYF14A-N at an operating ambient temperature exceeding $40^{\circ} \mathrm{C}$, reduce the current to 60%.
5. The MY2(S) can be used at $70^{\circ} \mathrm{C}$ with a carry current of 7 A .

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Socket	Dimensions	Terminal arrangement/ Internal connections (top view)	Mounting holes

PYF08A-E			Two, M3, M4, or 4.5-dia. holes Note: DIN-rail mounting is also possible. Refer to page G-15-G-16 for supporting DIN-rails.
PYF08A-N			Note: DIN-rail mounting is also possible. Refer to page G-15-G-16 for supporting DIN-rails.

Socket	Dimensions	Terminal arrangement/ Internal connections (top view)	Mounting holes

			Two, M3, M4, or 4.5-dia. holes (TOP VIEW) Note: DIN-rail mounting is also possible. Refer to page G-15-G-16 for supporting DIN-rails.
			Note: DIN-rail mounting is also possible. Refer to page G-15-G-16 for supporting DIN-rails.

Socket	Dimensions	Terminal arrangement/ internal connections (top view)/ mounting holes
PYF14-ESN-B		
PYF14-ESS-B		

Socket	Dimensions	Terminal arrangement/ Internal connections (bottom view)	Mounting holes
	Note: The PY08-Y1 includes sections indicated by dotted lines.		
	Note: The PY08QN-Y1 includes sections indicated by dotted lines.	0 4 6 8 0 0 0 0	
PY08-02			
	Note: The PY14-Y1 includes sections indicated by dotted lines.		
PY14QN/ PY14QN-Y1	Note: The PY14QN-Y1 includes sections indicated by dotted lines.		$\begin{array}{l\|l\|} \hline & \\ \hline & -\frac{1}{21,4^{\prime}}: \\ \hline \end{array}$
PY14-02			

Note: Use a panel with plate thickness of 1 to 2 mm for mounting the Sockets.

Hold-down Clips

PYC-A1
(2 pcs per set)

PYC-P

- 29 max. -

PYC-E1
(2 pcs per set)

For sockets PYF14-ESN-B/-ESS-B

Model	Description
PYC-0	Metal spring clip (Used with Relay only)
PYC 35-B	Plastic holding clip (Used with Relay only)
PYC TR1	Thermoplastic writeable label

Note: For total dimensions with plastic clip please refer to drawings of the sockets.

Mounting Plates for Back-connecting Sockets

PYP-1

$t=1.6$
PYP-18

DIN-rails and Accessories

Supporting DIN-rails

PFP-50N/PFP-100N

Note: The figure in the parentheses is for PFP-50N.

End Plate

PFP-M

Spacer

PFP-S

Precautions

Refer to General Precautions on page 11 of the General-purpose Relays and Power Relays Group Catalog (X034).

Connections

Do not reverse polarity when connecting DC-operated Relays with built-in diodes or indicators or high-sensitivity DC-operated Relays.

Mounting

- Whenever possible, mount Relays so that it is not subject to vibration or shock in the same direction as that of contact movement.

OMRON EUROPE B.V.

Wegalaan 67-69,
NL-2132 JD, Hoofddorp,
The Netherlands
Phone: +31 235681300
Fax: $\quad+31235681388$
industrial.omron.eu

