HESTORE.HU

EN: This Datasheet is presented by the manufacturer.
Please visit our website for pricing and availability at www.hestore.hu.

Miniature Single-pole Relay with 80A Surge Current and 20A Switching Current

- Capable of Switching Motor Load of 80-A Surge Current and 20A Switching/Cut-off Current
- Miniature, relay with high switching power and long endurance.
- Creepage distance conforms to UL and CSA standards.
- Highly noise-resistive insulation materials employed.
- Standard model available with flux protection construction.

RoHS Compliant

Model Number Legend
G4A- $\square \square-\square-\square$ $\overline{1}-\overline{3} \quad \overline{4}$

1. Number of Poles

1: 1-pole
2. Contact Form 3. Terminal Shape

None: \#250 quick-connect/PCB coil terminals P : PCB terminals/PCB coil terminals

Ordering Information

- Quick-connect/PCB coil terminals

Contact form	Load Contact Terminal	Coil terminal	Model	Rated voltage	Minimun packing unit
SPST-NO (1a)	\#250 quick-connect terminals	PCB terminals	G4A-1A-E	12,24 VDC	50 pcs/tray

- PCB terminals

Contact form	Load Contact Terminal	Coil terminal	Model	Rated voltage	Minimun packing unit
SPST-NO (1a)	PCB terminals	PCB terminals	G4A-1A-PE	12,24 VDC	$50 \mathrm{pcs} /$ tray

Note. When ordering, add the rated coil voltage to the model number.
Example: G4A-1A-E 12 VDC
Rated coil voltage

Ratings

- Coil

Item Rated voltage	Rated current (mA)	Coil resistance (Ω)	Must operate voltage (V)	Must release voltage (V)	Max. permissible voltage (V)	Power consumption (W)
			\% of rated voltage			
12 VDC	75	160	70\% max.	10\% min.	160\%	0.9
24 VDC	37.5	640			(at $23 \cdot \mathrm{C}$)	

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. The inductances shown above are reference values.
3. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. Max. permissible voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage.

- Contacts

Contact type	Single
Contact material	Ag-Alloy (Cd free)
Rated carry current	20 A
Max. switching voltage	250 VAC
Max. switching current	20 A

- Motor Ratings

Load conditions	Switching frequency	Electrical durability
250 VAC:		
Inrush current: 80 A,	ON: 1.5 s	200,000
0.3 s (cos $\phi=0.7$)	OFF: 1.5 s	operations
Break current: 20 A		
$(\cos \phi=0.9$)		

- Inverter Ratings

Load conditions	Switching frequency	Electrical durability
100 VAC:	Inrush current:	ON: 3 s O0 A (0.P) Break current: 20 A
OFF: 5 s	30,000 operations	

- Overload Durability (Reference Value)

Load conditions	Switching frequency	Electrical durability
250 VAC: Inrush current: 80 A Break current: 80 A $(\cos \phi=0.7)$	ON: 1.5 s OFF: 99 s	1,500 operations

Application Examples

- Air conditioner

4. Special Function

E : For long endurance

Characteristics

Contact resistance *1		$100 \mathrm{~m} \Omega$ max.
Operate time		20 ms max .
Release time		10 ms max .
Max. operating frequency	Mechanical	18,000 operations/hr
Insulation resistance *2		$\begin{array}{\|l} \hline 1,000 \mathrm{M} \Omega \mathrm{~min} . \\ \text { (at } 500 \mathrm{VDC} \text {) } \\ \hline \end{array}$
Dielectric strength	Between coil and contacts	$\begin{aligned} & 4,500 \text { VAC } 50 / 60 \mathrm{~Hz} \text { for } \\ & 1 \mathrm{~min}\end{aligned}$
	Between contacts of the same polarity	1,000 VAC $50 / 60 \mathrm{~Hz}$ for
Impulse withstand voltage	Between coil and contacts	$8.5 \mathrm{kV} 1.2 \times 50$
Vibration resistance	Destruction	10 to 55 to 10 Hz , 0.75 mm single amplitude (1.5 mm double amplitude)
	Malfunction	10 to 55 to 10 Hz , 0.75 mm single amplitude (1.5 mm double amplitude)
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$
Durability	Mechanical	2,000,000 operations min. (at 18,000 operations $/ \mathrm{hr}$)
	Motor load	200,000 operations min. (ON/OFF: 1.5 s)
	Inverter load	30,000 operations min. (ON: $3 \mathrm{~s}, \mathrm{OFF}: 5 \mathrm{~s}$)
Failure rate (P level) (reference value *3)		100 mA at 5 VDC
Ambient operating temperature		$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity		5\% to 85\%
Weight		Approx. 23 g

Note. The data given above are initial values.
*1. Measurement conditions: 5 VDC, 1 A, voltage drop method.
*2. Measurement conditions: The insulation resistance was measured with a 500 VDC megohmmeter at the same locations as the dielectric strength was measured.
*3. This value was measured at a switching frequency of 120 operations/min.

PCB Power Relay

Engineering Data

- Maximum Switching Capacity

 G4A-1A-(P)E

- Ambient Temperature vs. Must Operate and Must Release Voltages G4A-1A-(P)E

G
4
A

- Durability

 G4A-1A-(P)E

- Shock Malfunction

G4A-1A-(P)E
Number of Relays: 5 pcs

- Ambient Temperature vs. Maximum Coil Voltage G4A-1A-(P)E

Note. The maximum coil voltage is the maximum voltage that can be applied to the relay coil.

Dimensions

\#250 quick-connect/PCB coil terminals

G4A-1A-E

Mounting Holes

(Bottom View)

Terminal Arrangement/Internal Connections (Top View) (Bottom View)

(No coil polarity)

Straight PCB/PCB coil terminals G4A-1A-PE

PCB Mounting Holes

Terminal Arrangement/ Internal Connections
(Bottom View)

${ }^{4}-2$
1
(No coil polarity)

Approved Standards

-The rated values approved by each of the safety standards may be different from the performance characteristics individually defined in this datasheet.

UL Recognized \boldsymbol{M} (File No. E41643)

Model	Number of poles	Coil ratings	Contact ratings	Number of test operations
G4A-1A-E G4A-1A-PE	SPST-NO (1a)	5 to 100 VDC	$20 \mathrm{~A}, 250$ VAC (Resistive) $40^{\circ} \mathrm{C}$	$15 \mathrm{~A}, 30$ VDC (Resistive) $40^{\circ} \mathrm{C}$
		$23 \mathrm{~A}, 277 \mathrm{VAC}$ (General Purpose) $40^{\circ} \mathrm{C}$	30,000	

CSA Certified (1) (File No. LR31928)

Model	Number of poles	Coil ratings	Contact ratings	Number of test operations
G4A-1A-E G4A-1A-PE	SPST-NO (1a)	5 to 100 VDC	$20 \mathrm{~A}, 250$ VAC (Resistive) $40^{\circ} \mathrm{C}$	$15 \mathrm{~A}, 30$ VDC (Resistive) $40^{\circ} \mathrm{C}$
		$23 \mathrm{~A}, 277$ VAC (General Purpose) $40^{\circ} \mathrm{C}$	30,000	

EN/IEC, VDE Certified \triangle (Registration No. 107293)

Model	Number of poles	Coil ratings	Contact ratings	Number of test operations
G4A-1A-E	SPST-NO	$5,12,18$,	$20 \mathrm{~A}, 250$ VAC (cos $\phi=1.0)$	100,000
G4A-1A-PE	(1a)	24 VDC	$50^{\circ} \mathrm{C}$	

Precautions

-Please refer to "РСВ Relays Common Precautions" for correct use.

Correct Use

- Mounting

- When mounting more than two Relays side by side, keep a 3 mm gap horizontally and vertically between Relays to ensure a good heat dissipation. It may cause a malfunction if heat is not dissipated smoothly from the Relay.

- Terminals

- The terminals fit FASTON receptacle 250 and are suitable for positive-lock mounting. Use only Faston terminals with the specified numbers. Select leads for connecting Faston receptacles with wire diameters that are within the allowable range for the load current.
Do not apply excessive force to the terminals when mounting or dismounting the Faston receptacle. Insert and remove terminals carefully one at a time. Do not insert terminals at an angle, or insert/remove multiple terminals at the same time.
Refer to the following table for examples of positive-lock connectors made by AMP. Contact the manufacturer directly for details on connectors including availability.

Type	Receptacle terminals	Positive housing
\#250 terminals (width: 6.35 mm)	AMP 170330-1 $(170327-1)$ AMP 170334-1 $(170328-1)$ AMP 170335-1 $(170329-1)$	AMP 172076-1 natural color AMP 172076-4 yellow AMP 172076-5 green AMP 172076-6 blue

* The numbers shown in parentheses are for air-feeding.

- Other Precautions

- This Relay is suitable for power load switching of air-conditioning compressors and power supplies, etc. Do not use the G4A to switch micro loads less than 100 mA , such as in signal applications.

